These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23742318)

  • 1. Backbone-base interactions critical to quantum stabilization of transfer RNA anticodon structure.
    Witts RN; Hopson EC; Koballa DE; Van Boening TA; Hopkins NH; Patterson EV; Nagan MC
    J Phys Chem B; 2013 Jun; 117(25):7489-97. PubMed ID: 23742318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNA(Phe).
    Kumbhar NM; Kumbhar BV; Sonawane KD
    J Mol Graph Model; 2012 Sep; 38():174-85. PubMed ID: 23073221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational preferences of the base substituent in hypermodified nucleotide queuosine 5'-monophosphate 'pQ' and protonated variant 'pQH+'.
    Sonavane UB; Sonawane KD; Tewari R
    J Biomol Struct Dyn; 2002 Dec; 20(3):473-85. PubMed ID: 12437386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-selective RNA recognition by cysteinyl-tRNA synthetase.
    Hauenstein S; Zhang CM; Hou YM; Perona JJ
    Nat Struct Mol Biol; 2004 Nov; 11(11):1134-41. PubMed ID: 15489861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes.
    Auffinger P; Westhof E
    J Mol Biol; 1999 Sep; 292(3):467-83. PubMed ID: 10497015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin.
    Auffinger P; Westhof E
    J Mol Biol; 1997 Jun; 269(3):326-41. PubMed ID: 9199403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of queuosine on tRNA structure and function.
    Morris RC; Brown KG; Elliott MS
    J Biomol Struct Dyn; 1999 Feb; 16(4):757-74. PubMed ID: 10217448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.
    Rould MA; Perona JJ; Steitz TA
    Nature; 1991 Jul; 352(6332):213-8. PubMed ID: 1857417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of pseudouridine and pH on the structure and dynamics of the anticodon stem-loop of tRNA(Lys,3).
    Durant PC; Davis DR
    Nucleic Acids Symp Ser; 1997; (36):56-7. PubMed ID: 9478205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    J Biomol Struct Dyn; 1985 Dec; 3(3):479-93. PubMed ID: 3917033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr.
    Davis DR; Veltri CA; Nielsen L
    J Biomol Struct Dyn; 1998 Jun; 15(6):1121-32. PubMed ID: 9669557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons. The effect of modified bases adjacent to the anticodon triplet.
    Houssier C; Grosjean H
    J Biomol Struct Dyn; 1985 Oct; 3(2):387-408. PubMed ID: 3917029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1395-405. PubMed ID: 8107081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loop stereochemistry and dynamics in transfer RNA.
    Westhof E; Dumas P; Moras D
    J Biomol Struct Dyn; 1983 Oct; 1(2):337-55. PubMed ID: 6401114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes.
    Morin A; Auxilien S; Senger B; Tewari R; Grosjean H
    RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conformational rationale for the wobble behaviour of the first base of the anticodon triplet in tRNA.
    Balasubramaian R; Seetharamulu P
    J Theor Biol; 1983 Mar; 101(1):77-86. PubMed ID: 6876826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iso-energetic multiple conformations of hypermodified nucleic acid base wybutine (yW) which occur at 37(th) position in anticodon loop of tRNA(Phe).
    Kumbhar NM; Sonawane KD
    J Mol Graph Model; 2011 Jun; 29(7):935-46. PubMed ID: 21530341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.