These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23742329)

  • 1. Efficacy of spatial averaging of infrasonic pressure in varying wind speeds.
    DeWolf S; Walker KT; Zumberge MA; Denis S
    J Acoust Soc Am; 2013 Jun; 133(6):3739-50. PubMed ID: 23742329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind fence enclosures for infrasonic wind noise reduction.
    Abbott J; Raspet R; Webster J
    J Acoust Soc Am; 2015 Mar; 137(3):1265-73. PubMed ID: 25786940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrasonic wind-noise reduction by barriers and spatial filters.
    Hedlin MA; Raspet R
    J Acoust Soc Am; 2003 Sep; 114(3):1379-86. PubMed ID: 14514190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz.
    Zumberge MA; Berger J; Hedlin MA; Husmann E; Nooner S; Hilt R; Widmer-Schnidrig R
    J Acoust Soc Am; 2003 May; 113(5):2474-9. PubMed ID: 12765367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ calibration of atmospheric-infrasound sensors including the effects of wind-noise-reduction pipe systems.
    Gabrielson TB
    J Acoust Soc Am; 2011 Sep; 130(3):1154-63. PubMed ID: 21895058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of rosette infrasonic noise-reducing spatial filters.
    Hedlin MA; Alcoverro B; D'Spain G
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1807-20. PubMed ID: 14587582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for determining infrasound phase velocity direction with an array of line sensors.
    Walker KT; Zumberge MA; Hedlin MA; Shearer PM
    J Acoust Soc Am; 2008 Oct; 124(4):2090-9. PubMed ID: 19062850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance.
    Alcoverro B; Le Pichon A
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1717-27. PubMed ID: 15898619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind-generated ambient noise in a topographically isolated basin: a pre-industrial era proxy.
    Reeder DB; Sheffield ES; Mach SM
    J Acoust Soc Am; 2011 Jan; 129(1):64-73. PubMed ID: 21302988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind-noise reduction for infrasonic measurements using adaptive line enhancement.
    Khan I; Sultan A; Salam M; Ali W; Iqbal T
    J Acoust Soc Am; 2022 May; 151(5):3399. PubMed ID: 35649911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting blast-induced infrasound in wind noise.
    Howard WB; Dillion KL; Shields FD
    J Acoust Soc Am; 2010 Mar; 127(3):1244-50. PubMed ID: 20329823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing of high-volume sampler inlets for the sampling of atmospheric radionuclides.
    Irshad H; Su WC; Cheng YS; Medici F
    Health Phys; 2006 Sep; 91(3):188-99. PubMed ID: 16891894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of the ocean surface wind by ocean acoustic interferometers.
    Voronovich AG; Penland C
    J Acoust Soc Am; 2011 May; 129(5):2841-50. PubMed ID: 21568388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced drag coefficient for high wind speeds in tropical cyclones.
    Powell MD; Vickery PJ; Reinhold TA
    Nature; 2003 Mar; 422(6929):279-83. PubMed ID: 12646913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annoyance, perception, and physiological effects of wind turbine infrasound.
    Maijala PP; Kurki I; Vainio L; Pakarinen S; Kuuramo C; Lukander K; Virkkala J; Tiippana K; Stickler EA; Sainio M
    J Acoust Soc Am; 2021 Apr; 149(4):2238. PubMed ID: 33940893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wind noise at microphones within and across hearing aids at wind speeds below and above microphone saturation.
    Zakis JA
    J Acoust Soc Am; 2011 Jun; 129(6):3897-907. PubMed ID: 21682412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theory to explain some physiological effects of the infrasonic emissions at some wind farm sites.
    Schomer PD; Erdreich J; Pamidighantam PK; Boyle JH
    J Acoust Soc Am; 2015 Mar; 137(3):1356-65. PubMed ID: 25786948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sea-surface conditions on passive fathometry and bottom characterization.
    Means SL; Siderius M
    J Acoust Soc Am; 2009 Nov; 126(5):2234-41. PubMed ID: 19894804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial structure of low-frequency wind noise.
    Wilson DK; Greenfield RJ; White MJ
    J Acoust Soc Am; 2007 Dec; 122(6):EL223-8. PubMed ID: 18247645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and mitigation of wind noise on balloon-borne infrasound microbarometers.
    Krishnamoorthy S; Bowman DC; Komjathy A; Pauken MT; Cutts JA
    J Acoust Soc Am; 2020 Oct; 148(4):2361. PubMed ID: 33138515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.