These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
388 related articles for article (PubMed ID: 23742331)
1. The attenuation of sound by turbulence in internal flows. Weng C; Boij S; Hanifi A J Acoust Soc Am; 2013 Jun; 133(6):3764-76. PubMed ID: 23742331 [TBL] [Abstract][Full Text] [Related]
2. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows. Premnath KN; Pattison MJ; Banerjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026703. PubMed ID: 19391870 [TBL] [Abstract][Full Text] [Related]
3. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling. Schilling O; Mueschke NJ Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290 [TBL] [Abstract][Full Text] [Related]
4. Dynamic slip wall model for large-eddy simulation. Bae HJ; Lozano-Durán A; Bose ST; Moin P J Fluid Mech; 2019 Jan; 859():400-432. PubMed ID: 31631905 [TBL] [Abstract][Full Text] [Related]
5. A turbulence model for pulsatile arterial flows. Younis BA; Berger SA J Biomech Eng; 2004 Oct; 126(5):578-84. PubMed ID: 15648810 [TBL] [Abstract][Full Text] [Related]
6. Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Gomez T; Flutet V; Sagaut P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):035301. PubMed ID: 19392007 [TBL] [Abstract][Full Text] [Related]
7. Stochastic flow approach to model the mean velocity profile of wall-bounded flows. Pinier B; Mémin E; Laizet S; Lewandowski R Phys Rev E; 2019 Jun; 99(6-1):063101. PubMed ID: 31330641 [TBL] [Abstract][Full Text] [Related]
8. Elastic turbulence in a polymer solution flow. Groisman A; Steinberg V Nature; 2000 May; 405(6782):53-5. PubMed ID: 10811214 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear eddy viscosity modeling and experimental study of jet spreading rates. Heschl C; Inthavong K; Sanz W; Tu J Indoor Air; 2014 Feb; 24(1):93-102. PubMed ID: 23668473 [TBL] [Abstract][Full Text] [Related]
10. Large- and very-large-scale motions in channel and boundary-layer flows. Balakumar BJ; Adrian RJ Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):665-81. PubMed ID: 17244580 [TBL] [Abstract][Full Text] [Related]
11. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
12. Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows. Cohen J; Philip J; Ben-Dov G Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):509-27. PubMed ID: 18990659 [TBL] [Abstract][Full Text] [Related]
13. Some predictions of the attached eddy model for a high Reynolds number boundary layer. Nickels TB; Marusic I; Hafez S; Hutchins N; Chong MS Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):807-22. PubMed ID: 17244588 [TBL] [Abstract][Full Text] [Related]
14. Turbulence simulation by adaptive multi-relaxation lattice boltzmann modeling. Liu X; Pang WM; Qin J; Fu CW IEEE Trans Vis Comput Graph; 2014 Feb; 20(2):289-302. PubMed ID: 24356370 [TBL] [Abstract][Full Text] [Related]
15. Phenomenological and statistical analyses of turbulence in forced convection with temperature-dependent viscosity under non-Boussinesq condition. Yahya SM; Anwer SF; Sanghi S Eur Phys J E Soft Matter; 2013 Oct; 36(10):120. PubMed ID: 24158263 [TBL] [Abstract][Full Text] [Related]
16. Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Griffin KP; Fu L; Moin P Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34413197 [TBL] [Abstract][Full Text] [Related]
17. Nature of laminar-turbulence intermittency in shear flows. Avila M; Hof B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063012. PubMed ID: 23848777 [TBL] [Abstract][Full Text] [Related]
18. Low-dimensional representation of near-wall dynamics in shear flows, with implications to wall-models. Schmid PJ; Sayadi T Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167578 [TBL] [Abstract][Full Text] [Related]
19. A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows. Chini GP; Montemuro B; White CM; Klewicki J Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167583 [TBL] [Abstract][Full Text] [Related]