These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23742360)

  • 41. A design for a dynamic biomimetic sonarhead inspired by horseshoe bats.
    Caspers P; Müller R
    Bioinspir Biomim; 2018 Jun; 13(4):046011. PubMed ID: 29794330
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar.
    Müller R; Gupta AK; Zhu H; Pannala M; Gillani US; Fu Y; Caspers P; Buck JR
    Phys Rev Lett; 2017 Apr; 118(15):158102. PubMed ID: 28452520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bio-acoustic tracking and localization using heterogeneous, scalable microphone arrays.
    Verreycken E; Simon R; Quirk-Royal B; Daems W; Barber J; Steckel J
    Commun Biol; 2021 Nov; 4(1):1275. PubMed ID: 34759372
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spiral-Shaped Biologically-Inspired Ultrasonic Sensor.
    Fiorillo AS; Pullano SA; Critello CD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):635-642. PubMed ID: 31647427
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ear deformations give bats a physical mechanism for fast adaptation of ultrasonic beam patterns.
    Gao L; Balakrishnan S; He W; Yan Z; Müller R
    Phys Rev Lett; 2011 Nov; 107(21):214301. PubMed ID: 22181884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Object localization using a biosonar beam: how opening your mouth improves localization.
    Arditi G; Weiss AJ; Yovel Y
    R Soc Open Sci; 2015 Aug; 2(8):150225. PubMed ID: 26361552
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling human echolocation of near-range targets with an audible sonar.
    Kuc R; Kuc V
    J Acoust Soc Am; 2016 Feb; 139(2):581-7. PubMed ID: 26936542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of a dynamic sonar emitter inspired by hipposiderid bats.
    Yang L; Yu A; Müller R
    Bioinspir Biomim; 2018 Jul; 13(5):056003. PubMed ID: 29916396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam.
    Zhuang Q; Müller R
    Phys Rev Lett; 2006 Nov; 97(21):218701. PubMed ID: 17155779
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human echolocators adjust loudness and number of clicks for detection of reflectors at various azimuth angles.
    Thaler L; De Vos R; Kish D; Antoniou M; Baker C; Hornikx M
    Proc Biol Sci; 2018 Feb; 285(1873):. PubMed ID: 29491173
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Device for Human Ultrasonic Echolocation.
    Sohl-Dickstein J; Teng S; Gaub BM; Rodgers CC; Li C; DeWeese MR; Harper NS
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1526-1534. PubMed ID: 25608301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phase-locked loop device for the fine frequency analysis of the biosonar signals of bats.
    Smith DM; Mercer R; Goldman LJ; Henson OW; Henson MM
    J Acoust Soc Am; 1977 Apr; 61(4):1092-3. PubMed ID: 864098
    [No Abstract]   [Full Text] [Related]  

  • 53. Ranging in human sonar: effects of additional early reflections and exploratory head movements.
    Wallmeier L; Wiegrebe L
    PLoS One; 2014; 9(12):e115363. PubMed ID: 25551226
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Small-scale location identification in natural environments with deep learning based on biomimetic sonar echoes.
    Zhang L; Farabow A; Singhal P; Müller R
    Bioinspir Biomim; 2023 Feb; 18(2):. PubMed ID: 36669200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comment on paper entitled, "An inversion of Freedman's 'image pulse' model in air". Acoust. Soc. Am. 119(2), 965-975 (2006).
    Hickling R; Gaunaurd GC
    J Acoust Soc Am; 2006 Aug; 120(2):589-90. PubMed ID: 16938943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Auditory orientation and distance estimation of sighted humans using virtual echolocation with artificial and self-generated sounds.
    Steffens H; Schutte M; Ewert SD
    JASA Express Lett; 2022 Dec; 2(12):124403. PubMed ID: 36586958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sonar for generalized target description and its similarity to animal echolocation systems.
    Altes RA
    J Acoust Soc Am; 1976 Jan; 59(1):97-106. PubMed ID: 1249325
    [No Abstract]   [Full Text] [Related]  

  • 58. Artificial neural network classification of surface reflectors and volume scatterers using sequential echoes acquired with a biomimetic audible sonar.
    Kuc R
    J Acoust Soc Am; 2020 Apr; 147(4):2357. PubMed ID: 32359283
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioinspired solution to finding passageways in foliage with sonar.
    Wang R; Müller R
    Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34584027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Letter: Measurement of "instantaneous" carrier frequency of bat pulses.
    Kindlmann PJ; Berman LB; Johnson RA; Pollak GD; Henson OW; Novick A
    J Acoust Soc Am; 1973 Nov; 54(5):1380-2. PubMed ID: 4765811
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.