These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23742379)

  • 41. A model of perceptual segregation based on clustering the time series of the simulated auditory nerve firing probability.
    Balaguer-Ballester E; Coath M; Denham SL
    Biol Cybern; 2007 Dec; 97(5-6):479-91. PubMed ID: 17994247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correct tonotopic representation is necessary for complex pitch perception.
    Oxenham AJ; Bernstein JG; Penagos H
    Proc Natl Acad Sci U S A; 2004 Feb; 101(5):1421-5. PubMed ID: 14718671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Speech perception in individuals with auditory dys-synchrony: effect of lengthening of voice onset time and burst duration of speech segments.
    Kumar UA; Jayaram M
    J Laryngol Otol; 2013 Jul; 127(7):656-65. PubMed ID: 23790092
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The robustness of speech representations obtained from simulated auditory nerve fibers under different noise conditions.
    Jürgens T; Brand T; Clark NR; Meddis R; Brown GJ
    J Acoust Soc Am; 2013 Sep; 134(3):EL282-8. PubMed ID: 23968061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coding of sounds in the auditory system and its relevance to signal processing and coding in cochlear implants.
    Moore BC
    Otol Neurotol; 2003 Mar; 24(2):243-54. PubMed ID: 12621339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Speech coding in the auditory nerve: IV. Sounds with consonant-like dynamic characteristics.
    Delgutte B; Kiang NY
    J Acoust Soc Am; 1984 Mar; 75(3):897-907. PubMed ID: 6707319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-frequency acoustic modulations generated by the high-frequency portion of the cochlea, noninvasively recorded from the scalp of mice (Mus musculus).
    Henry KR
    J Comp Psychol; 2000 Mar; 114(1):22-35. PubMed ID: 10739309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel VOCODER for cochlear implants.
    Johnson PA; McNamara DM; Ziarani AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4732-5. PubMed ID: 19163773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The case of the missing pitch templates: how harmonic templates emerge in the early auditory system.
    Shamma S; Klein D
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2631-44. PubMed ID: 10830385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Attention selectively modulates cortical entrainment in different regions of the speech spectrum.
    Baltzell LS; Horton C; Shen Y; Richards VM; D'Zmura M; Srinivasan R
    Brain Res; 2016 Aug; 1644():203-12. PubMed ID: 27195825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Encoding of vowel-like sounds in the auditory nerve: model predictions of discrimination performance.
    Tan Q; Carney LH
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1210-22. PubMed ID: 15807010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human frequency-following responses: representation of steady-state synthetic vowels.
    Krishnan A
    Hear Res; 2002 Apr; 166(1-2):192-201. PubMed ID: 12062771
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human temporal auditory acuity as assessed by envelope following responses.
    Purcell DW; John SM; Schneider BA; Picton TW
    J Acoust Soc Am; 2004 Dec; 116(6):3581-93. PubMed ID: 15658709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatiotemporal representation of the pitch of harmonic complex tones in the auditory nerve.
    Cedolin L; Delgutte B
    J Neurosci; 2010 Sep; 30(38):12712-24. PubMed ID: 20861376
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predictions of formant-frequency discrimination in noise based on model auditory-nerve responses.
    Tan Q; Carney LH
    J Acoust Soc Am; 2006 Sep; 120(3):1435-45. PubMed ID: 17004467
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extending the domain of center frequencies for the compressive gammachirp auditory filter.
    Patterson RD; Unoki M; Irino T
    J Acoust Soc Am; 2003 Sep; 114(3):1529-42. PubMed ID: 14514206
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Speech processing in the auditory system. II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve.
    Shamma SA
    J Acoust Soc Am; 1985 Nov; 78(5):1622-32. PubMed ID: 3840813
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cochleagram-based audio pattern separation using two-dimensional non-negative matrix factorization with automatic sparsity adaptation.
    Gao B; Woo WL; Khor LC
    J Acoust Soc Am; 2014 Mar; 135(3):1171-85. PubMed ID: 24606260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling the perception of concurrent vowels: vowels with different fundamental frequencies.
    Assmann PF; Summerfield Q
    J Acoust Soc Am; 1990 Aug; 88(2):680-97. PubMed ID: 2212292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-domain analysis of auditory-nerve-fiber firing rates.
    Secker-Walker HE; Searle CL
    J Acoust Soc Am; 1990 Sep; 88(3):1427-36. PubMed ID: 2172344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.