These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 23742454)
1. SCC-DFTB calculation of the static first hyperpolarizability: from gas phase molecules to functionalized surfaces. Nénon S; Champagne B J Chem Phys; 2013 May; 138(20):204107. PubMed ID: 23742454 [TBL] [Abstract][Full Text] [Related]
2. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. Maupin CM; Aradi B; Voth GA J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461 [TBL] [Abstract][Full Text] [Related]
3. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. Witek HA; Irle S; Morokuma K J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808 [TBL] [Abstract][Full Text] [Related]
4. Application of the SCC-DFTB method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. Choi TH; Jordan KD J Phys Chem B; 2010 May; 114(20):6932-6. PubMed ID: 20433189 [TBL] [Abstract][Full Text] [Related]
5. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules. Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305 [TBL] [Abstract][Full Text] [Related]
6. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding. Fox H; Newman KE; Schneider WF; Corcelli SA J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305 [TBL] [Abstract][Full Text] [Related]
7. Origin of the Surface-Induced First Hyperpolarizability in the C60/SiO2 System: SCC-DFTB Insight. Nénon S; Champagne B J Phys Chem Lett; 2014 Jan; 5(1):149-53. PubMed ID: 26276195 [TBL] [Abstract][Full Text] [Related]
8. Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability. Suponitsky KY; Tafur S; Masunov AE J Chem Phys; 2008 Jul; 129(4):044109. PubMed ID: 18681636 [TBL] [Abstract][Full Text] [Related]
9. Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters. Rapacioli M; Spiegelman F; Talbi D; Mineva T; Goursot A; Heine T; Seifert G J Chem Phys; 2009 Jun; 130(24):244304. PubMed ID: 19566150 [TBL] [Abstract][Full Text] [Related]
10. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method. Xie L; Liu H J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943 [TBL] [Abstract][Full Text] [Related]
11. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. Choi TH; Liang R; Maupin CM; Voth GA J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052 [TBL] [Abstract][Full Text] [Related]
12. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method. Witek HA; Morokuma K J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252 [TBL] [Abstract][Full Text] [Related]
13. Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules. Sattelmeyer KW; Tirado-Rives J; Jorgensen WL J Phys Chem A; 2006 Dec; 110(50):13551-9. PubMed ID: 17165882 [TBL] [Abstract][Full Text] [Related]
14. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra. Witek HA; Morokuma K; Stradomska A J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809 [TBL] [Abstract][Full Text] [Related]
15. Performance of the SCC-DFTB Model for Description of Five-Membered Ring Carbohydrate Conformations: Comparison to Force Fields, High-Level Electronic Structure Methods, and Experiment. Islam SM; Roy PN J Chem Theory Comput; 2012 Jul; 8(7):2412-23. PubMed ID: 26588973 [TBL] [Abstract][Full Text] [Related]
16. Electron correlation effects on the first hyperpolarizability of push-pull π-conjugated systems. de Wergifosse M; Champagne B J Chem Phys; 2011 Feb; 134(7):074113. PubMed ID: 21341834 [TBL] [Abstract][Full Text] [Related]
17. Description of phosphate hydrolysis reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) theory. 1. Parameterization. Yang Y; Yu H; York D; Elstner M; Cui Q J Chem Theory Comput; 2008; 4(12):2067-2084. PubMed ID: 19352441 [TBL] [Abstract][Full Text] [Related]
18. Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. Scholz R; Luschtinetz R; Seifert G; Jägeler-Hoheisel T; Körner C; Leo K; Rapacioli M J Phys Condens Matter; 2013 Nov; 25(47):473201. PubMed ID: 24135026 [TBL] [Abstract][Full Text] [Related]
19. An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium. Dolgonos G; Aradi B; Moreira NH; Frauenheim T J Chem Theory Comput; 2010 Jan; 6(1):266-78. PubMed ID: 26614337 [TBL] [Abstract][Full Text] [Related]
20. SCC-DFTB Parametrization for Boron and Boranes. Grundkötter-Stock B; Bezugly V; Kunstmann J; Cuniberti G; Frauenheim T; Niehaus TA J Chem Theory Comput; 2012 Mar; 8(3):1153-63. PubMed ID: 26593373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]