These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23742458)

  • 1. Accurate complex scaling of three dimensional numerical potentials.
    Cerioni A; Genovese L; Duchemin I; Deutsch T
    J Chem Phys; 2013 May; 138(20):204111. PubMed ID: 23742458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation.
    Szalay V
    J Chem Phys; 2006 Oct; 125(15):154115. PubMed ID: 17059247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical operator calculus in higher dimensions.
    Beylkin G; Mohlenkamp MJ
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10246-51. PubMed ID: 12140360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates.
    Czakó G; Szalay V; Császár AG; Furtenbacher T
    J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Equivalence of Different Methods for Calculating Resonances: From Complex Gaussian Basis Set to Reflection-Free Complex Absorbing Potentials via the Smooth Exterior Scaling Transformation.
    Ben-Asher A; Moiseyev N
    J Chem Theory Comput; 2016 Jun; 12(6):2542-52. PubMed ID: 27045821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidimensional supersymmetric quantum mechanics: a scalar Hamiltonian approach to excited states by the imaginary time propagation method.
    Chou CC; Kouri DJ
    J Phys Chem A; 2013 Apr; 117(16):3449-57. PubMed ID: 23531036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feshbach resonances: the branching of quantum mechanics into Hermitian and non-Hermitian formalisms.
    Moiseyev N
    J Phys Chem A; 2009 Jul; 113(26):7660-6. PubMed ID: 19298083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Hermitian delocalization from Hermitian Hamiltonians.
    Moiseyev N; Glück M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041103. PubMed ID: 11308815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum computing for atomic and molecular resonances.
    Bian T; Kais S
    J Chem Phys; 2021 May; 154(19):194107. PubMed ID: 34240908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimode wavelet basis calculations via the molecular self-consistent-field plus configuration-interaction method.
    Griffin CD; Acevedo R; Massey DW; Kinsey JL; Johnson BR
    J Chem Phys; 2006 Apr; 124(13):134105. PubMed ID: 16613447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear-scaling spectral-element method for computing electrostatic potentials.
    Watson MA; Hirao K
    J Chem Phys; 2008 Nov; 129(18):184107. PubMed ID: 19045386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and accurate solver of the three-dimensional screened and unscreened Poisson's equation with generic boundary conditions.
    Cerioni A; Genovese L; Mirone A; Sole VA
    J Chem Phys; 2012 Oct; 137(13):134108. PubMed ID: 23039586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fourth age of quantum chemistry: molecules in motion.
    Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G
    Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of complex scaling transformation using the Wigner representation of wavefunctions.
    Kaprálová-Ždánská PR
    J Chem Phys; 2011 May; 134(20):204101. PubMed ID: 21639418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear-scaling quantum mechanical methods for excited states.
    Yam C; Zhang Q; Wang F; Chen G
    Chem Soc Rev; 2012 May; 41(10):3821-38. PubMed ID: 22419073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to choose one-dimensional basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the one-dimensional functions: energy levels of coupled systems with as many as 16 coordinates.
    Dawes R; Carrington T
    J Chem Phys; 2005 Apr; 122(13):134101. PubMed ID: 15847449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel implementation of a direct method for calculating electrostatic potentials.
    Jusélius J; Sundholm D
    J Chem Phys; 2007 Mar; 126(9):094101. PubMed ID: 17362098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity.
    Samsonov BF
    Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1989):20120044. PubMed ID: 23509374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.
    Chou CC; Kouri DJ
    J Phys Chem A; 2013 Apr; 117(16):3442-8. PubMed ID: 23531015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.