These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23742464)

  • 1. Assessing the two-body diffusion tensor calculated by the bead models.
    Wang N; Huber GA; McCammon JA
    J Chem Phys; 2013 May; 138(20):204117. PubMed ID: 23742464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of hydrodynamic properties of macromolecular bead models with overlapping spheres.
    Carrasco B; García de la Torre J; Zipper P
    Eur Biophys J; 1999; 28(6):510-5. PubMed ID: 10460344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules.
    Tworek JW; Elcock AH
    J Chem Theory Comput; 2023 Aug; 19(15):5099-5111. PubMed ID: 37409946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
    Byron O
    Methods Cell Biol; 2008; 84():327-73. PubMed ID: 17964937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BROWNIAN DYNAMICS SIMULATION OF MACROMOLECULE DIFFUSION IN A PROTOCELL.
    Ando T; Skolnick J
    Quantum Bioinform IV (2010); 2011; 28():413-426. PubMed ID: 25599093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bead-model calculation of scattering diagrams: Brownian dynamics study of flexibility in immunoglobulin IgG1.
    Díaz FG; López Cascales JJ; García de la Torre J
    J Biochem Biophys Methods; 1993 Jul; 26(4):261-71. PubMed ID: 8409198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides A Fast But Still Accurate Treatment Of Hydrodynamic Interactions In Brownian Dynamics Simulations Of Biological Macromolecules.
    Tworek JW; Elcock AH
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix-free Brownian dynamics simulation technique for semidilute polymeric solutions.
    Saadat A; Khomami B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033307. PubMed ID: 26465586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic radii and diffusion coefficients of particle aggregates derived from the bead model.
    Adamczyk Z; Sadlej K; Wajnryb E; Ekiel-Jezewska ML; Warszyński P
    J Colloid Interface Sci; 2010 Jul; 347(2):192-201. PubMed ID: 20430400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
    Zuk PJ; Cichocki B; Szymczak P
    Biophys J; 2018 Sep; 115(5):782-800. PubMed ID: 30144937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational diffusion of macromolecules and nanoparticles modeled as non-overlapping bead arrays in an effective medium.
    Allison S; Pei H; Haynes M; Xin Y; Law L; Labrum J; Augustin D
    J Phys Chem B; 2008 May; 112(18):5858-66. PubMed ID: 18416571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic theory of topologically entangled fluids of rigid macromolecules.
    Sussman DM; Schweizer KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061501. PubMed ID: 21797366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Friction of -bead macromolecules in solution: effects of the bead-solvent interaction.
    Uvarov A; Fritzsche S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011111. PubMed ID: 16486126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic viscosity of bead models for macromolecules and nanoparticles.
    García de la Torre J; Amorós D; Ortega A
    Eur Biophys J; 2010 Feb; 39(3):381-8. PubMed ID: 19198827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.
    Długosz M; Antosiewicz JM
    J Phys Chem B; 2015 Jul; 119(26):8425-39. PubMed ID: 26068580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs.
    Rocco M; Byron O
    Eur Biophys J; 2015 Sep; 44(6):417-31. PubMed ID: 26066679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An O(N2) approximation for hydrodynamic interactions in Brownian dynamics simulations.
    Geyer T; Winter U
    J Chem Phys; 2009 Mar; 130(11):114905. PubMed ID: 19317564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and analysis of analytical ultracentrifugation experiments for heterogeneous macromolecules and nanoparticles based on Brownian dynamics simulation.
    de la Torre JG; Cifre JGH; Peña AID
    Eur Biophys J; 2018 Oct; 47(7):845-854. PubMed ID: 30030576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion.
    Ando T; Skolnick J
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18457-62. PubMed ID: 20937902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.