These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23742571)

  • 21. Tunable GHz pulse repetition rate operation in high-power TEM(00)-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking.
    Huang YJ; Tzeng YS; Tang CY; Huang YP; Chen YF
    Opt Express; 2012 Jul; 20(16):18230-7. PubMed ID: 23038372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture.
    Shi Y; Gao C; Wang S; Li S; Song R; Zhang M; Gao M; Wang Q
    Opt Express; 2019 Feb; 27(3):2671-2680. PubMed ID: 30732301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 50-mJ macro-pulses at 1064 nm from a diode-pumped picosecond laser system.
    Agnesi A; Carrà L; Dallocchio P; Pirzio F; Reali G; Lodo S; Piccinno G
    Opt Express; 2011 Oct; 19(21):20316-21. PubMed ID: 21997042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diode-pumped passively mode-locked Nd:YAG laser at 1338 nm with a semiconductor saturable absorber mirror.
    Yang Y; Xu JL; He JL; Yang XQ; Zhang BY; Yang H; Liu SD; Zhang BT
    Appl Opt; 2011 Dec; 50(36):6713-6. PubMed ID: 22193204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-frequency pulsed laser source with hybrid MOPA configuration.
    Zhu R; Wang J; Zhou J; Liu J; Chen W
    Appl Opt; 2012 Jun; 51(17):3826-31. PubMed ID: 22695661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress of the improved magnetically insulated transmission line oscillator.
    Fan YW; Zhong HH; Li ZQ; Shu T; Zhang JD; Liu JL; Yang JH; Zhang J; Yuan CW; Luo L
    Rev Sci Instrum; 2008 Mar; 79(3):034703. PubMed ID: 18377036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High peak power output, high PRF by cavity dumping a Nd:YAG laser.
    Kruegle HA; Klein L
    Appl Opt; 1976 Feb; 15(2):466-71. PubMed ID: 20164994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier.
    Hong KH; Gopinath JT; Rand D; Siddiqui AM; Huang SW; Li E; Eggleton BJ; Hybl JD; Fan TY; Kärtner FX
    Opt Lett; 2010 Jun; 35(11):1752-4. PubMed ID: 20517404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source.
    Johnson JM; Reale DV; Krile JT; Garcia RS; Cravey WH; Neuber AA; Dickens JC; Mankowski JJ
    Rev Sci Instrum; 2016 May; 87(5):054704. PubMed ID: 27250448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repetition-frequency-tunable mode-locked surface emitting semiconductor laser between 2.78 and 7.87 GHz.
    Wilcox KG; Quarterman AH; Beere HE; Ritchie DA; Tropper AC
    Opt Express; 2011 Nov; 19(23):23453-9. PubMed ID: 22109222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A wideband high-power microwave radiation source based on gyromagnetic nonlinear transmission line and Vlasov antenna.
    Cui Y; Meng J; Luo K; Han J; Huang L; Zhu D
    Rev Sci Instrum; 2022 Oct; 93(10):104706. PubMed ID: 36319321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 6 GW nanosecond solid-state generator based on semiconductor opening switch.
    Gusev AI; Pedos MS; Rukin SN; Timoshenkov SP; Tsyranov SN
    Rev Sci Instrum; 2015 Nov; 86(11):114706. PubMed ID: 26628158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wide-bandwidth adjustable Q switch based on rubidium dimers.
    Sarkisyan DG; Krupkin V; Glushko B
    Appl Opt; 1994 Aug; 33(24):5518-21. PubMed ID: 20935946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-power gain-switched Tm(3+)-doped fiber laser.
    Tang Y; Xu L; Yang Y; Xu J
    Opt Express; 2010 Oct; 18(22):22964-72. PubMed ID: 21164635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequency and timing stability of an airborne injection-seeded Nd:YAG laser system for direct-detection wind lidar.
    Lemmerz C; Lux O; Reitebuch O; Witschas B; Wührer C
    Appl Opt; 2017 Nov; 56(32):9057-9068. PubMed ID: 29131193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of an ultra-short electrical pulse with width shorter than the excitation laser.
    Shi W; Wang S; Ma C; Xu M
    Sci Rep; 2016 Jun; 6():27577. PubMed ID: 27273512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Picosecond solid-state generator with a peak power of 50 GW.
    Alichkin EA; Pedos MS; Ponomarev AV; Rukin SN; Timoshenkov SP; Karelin SY
    Rev Sci Instrum; 2020 Oct; 91(10):104705. PubMed ID: 33138564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic.
    Den Hartog DJ; Jiang N; Lempert WR
    Rev Sci Instrum; 2008 Oct; 79(10):10E736. PubMed ID: 19044552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Q-switched Tm:YAG ceramic slab laser.
    Zhang S; Wang M; Xu L; Wang Y; Tang Y; Cheng X; Chen W; Xu J; Jiang B; Pan Y
    Opt Express; 2011 Jan; 19(2):727-32. PubMed ID: 21263612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.
    Bhandari R; Taira T
    Opt Express; 2011 Sep; 19(20):19135-41. PubMed ID: 21996855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.