These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23742571)

  • 61. 1 mJ pulse bursts from a Yb-doped fiber amplifier.
    Kalaycıoğlu H; Eldeniz YB; Akçaalan Ö; Yavaş S; Gürel K; Efe M; Ilday FÖ
    Opt Lett; 2012 Jul; 37(13):2586-8. PubMed ID: 22743463
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Generation of sub-7-cycle optical pulses from a mode-locked ytterbium-doped single-mode fiber oscillator pumped by polarization-combined 915 nm laser diodes.
    Kurita T; Yoshida H; Kawashima T; Miyanaga N
    Opt Lett; 2012 Oct; 37(19):3972-4. PubMed ID: 23027249
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 100 W all fiber picosecond MOPA laser.
    Chen SP; Chen HW; Hou J; Liu ZJ
    Opt Express; 2009 Dec; 17(26):24008-12. PubMed ID: 20052112
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system.
    Pavlov I; Ilbey E; Dülgergil E; Bayri A; Ilday FÖ
    Opt Express; 2012 Apr; 20(9):9471-5. PubMed ID: 22535037
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Micromachining of Invar Foils with GHz, MHz and kHz Femtosecond Burst Modes.
    Butkus S; Jukna V; Paipulas D; Barkauskas M; Sirutkaitis V
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751113
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Photonic microwave generation with high-power photodiodes.
    Fortier TM; Quinlan F; Hati A; Nelson C; Taylor JA; Fu Y; Campbell J; Diddams SA
    Opt Lett; 2013 May; 38(10):1712-4. PubMed ID: 23938920
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate.
    Rothhardt J; Demmler S; Hädrich S; Limpert J; Tünnermann A
    Opt Express; 2012 May; 20(10):10870-8. PubMed ID: 22565712
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Passive mode-locking of a diode-pumped Nd:YVO(4) laser by intracavity SHG in PPKTP.
    Iliev H; Chuchumishev D; Buchvarov I; Petrov V
    Opt Express; 2010 Mar; 18(6):5754-62. PubMed ID: 20389592
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes.
    Lanz B; Ryvkin BS; Avrutin EA; Kostamovaara JT
    Opt Express; 2013 Dec; 21(24):29780-91. PubMed ID: 24514528
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron.
    Picard JF; Schaub SC; Rosenzweig G; Stephens JC; Shapiro MA; Temkin RJ
    Appl Phys Lett; 2019 Apr; 114(16):164102. PubMed ID: 32127718
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A rate-doubled 10-GHz fiducial comb generator for precision optical timing calibration.
    Bittle WA; Bock M; Boni R; Kendrick J; Sorce A; Sorce C
    Rev Sci Instrum; 2019 Mar; 90(3):035103. PubMed ID: 30927813
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining.
    Rezaei S; Li J; Herman PR
    Opt Lett; 2015 May; 40(9):2064-7. PubMed ID: 25927785
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.
    Hu L; Su J; Ding Z; Hao Q; Fan Y; Liu C
    Rev Sci Instrum; 2016 Aug; 87(8):086107. PubMed ID: 27587178
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single-frequency CaWO₄ Raman amplifier at 1178 nm.
    Men S; Liu Z; Cong Z; Liu Y; Xia J; Zhang S; Cheng W; Li Y; Tu C; Zhang X
    Opt Lett; 2015 Feb; 40(4):530-3. PubMed ID: 25680142
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Semiconductor sharpeners providing a subnanosecond voltage rise time of GW-range pulses.
    Gusev AI; Pedos MS; Rukin SN; Timoshenkov SP; Tsyranov SN
    Rev Sci Instrum; 2017 Nov; 88(11):114704. PubMed ID: 29195406
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A compact 4 GW pulse generator based on pulse forming network-Marx for high-power microwave application.
    Zhang H; Shu T; Li Z; Zhang Z; Li W; Li D
    Rev Sci Instrum; 2021 Jun; 92(6):064707. PubMed ID: 34243526
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dual chirped optical pulses from a phase-modulated laser.
    Kim Y; Kim DY
    Opt Express; 2007 Dec; 15(25):16357-66. PubMed ID: 19550926
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Photonic-assisted chirped microwave pulses generation with a flexible and fine parameter manipulation.
    Liu X; Pan W; Zou X; Yan L; Luo B; Zheng D; Ye J; Lu B
    Opt Express; 2016 Aug; 24(17):19592-9. PubMed ID: 27557237
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A megawatt solid-state modulator for high repetition rate pulse generation.
    Wang Y; Pribyl P; Gekelman W
    Rev Sci Instrum; 2016 Feb; 87(2):023509. PubMed ID: 26931851
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A 100 GW, 100 ps solid-state pulsed power system based on semiconductor opening switch generator and magnetic compression lines.
    Patrakov VE; Pedos MS; Ponomarev AV; Rukin SN; Timoshenkov SP
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39162608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.