These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 23742648)
1. Laminin adsorption on nanostructures: switching the molecular orientation by local curvature changes. Giamblanco N; Martines E; Marletta G Langmuir; 2013 Jul; 29(26):8335-42. PubMed ID: 23742648 [TBL] [Abstract][Full Text] [Related]
2. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR. Malmström J; Agheli H; Kingshott P; Sutherland DS Langmuir; 2007 Sep; 23(19):9760-8. PubMed ID: 17691829 [TBL] [Abstract][Full Text] [Related]
3. Surface-induced rearrangement of polyelectrolyte complexes: influence of complex composition on adsorbed layer properties. Ondaral S; Ankerfors C; Odberg L; Wågberg L Langmuir; 2010 Sep; 26(18):14606-14. PubMed ID: 20799704 [TBL] [Abstract][Full Text] [Related]
4. Complexes of xylan and synthetic polyelectrolytes. Characterization and adsorption onto high quality unbleached fibres. Mocchiutti P; Galván MV; Peresin MS; Schnell CN; Zanuttini MA Carbohydr Polym; 2015 Feb; 116():131-9. PubMed ID: 25458282 [TBL] [Abstract][Full Text] [Related]
5. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. Mermut O; Phillips DC; York RL; McCrea KR; Ward RS; Somorjai GA J Am Chem Soc; 2006 Mar; 128(11):3598-607. PubMed ID: 16536533 [TBL] [Abstract][Full Text] [Related]
6. Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces. Pfeiffer I; Petronis S; Köper I; Kasemo B; Zäch M J Phys Chem B; 2010 Apr; 114(13):4623-31. PubMed ID: 20232804 [TBL] [Abstract][Full Text] [Related]
7. Visco-elastic and adhesive properties of adsorbed polyelectrolyte multilayers determined in situ with QCM-D and AFM measurements. Notley SM; Eriksson M; Wågberg L J Colloid Interface Sci; 2005 Dec; 292(1):29-37. PubMed ID: 15978604 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of hydrophobically end-capped poly(ethylene glycol) on cellulose. Holappa S; Kontturi KS; Salminen A; Seppälä J; Laine J Langmuir; 2013 Nov; 29(45):13750-9. PubMed ID: 24117230 [TBL] [Abstract][Full Text] [Related]
9. Orienting proteins by nanostructured surfaces: evidence of a curvature-driven geometrical resonance. Messina GML; Bocchinfuso G; Giamblanco N; Mazzuca C; Palleschi A; Marletta G Nanoscale; 2018 Apr; 10(16):7544-7555. PubMed ID: 29637964 [TBL] [Abstract][Full Text] [Related]
10. Protein film formation on cell culture surfaces investigated by quartz crystal microbalance with dissipation monitoring and atomic force microscopy. Wargenau A; Fekete N; Beland AV; Sabbatier G; Bowden OM; Boulanger MD; Hoesli CA Colloids Surf B Biointerfaces; 2019 Nov; 183():110447. PubMed ID: 31505390 [TBL] [Abstract][Full Text] [Related]
11. Supported lipid bilayers with controlled curvature via colloidal lithography. Sundh M; Manandhar M; Svedhem S; Sutherland DS IEEE Trans Nanobioscience; 2011 Sep; 10(3):187-93. PubMed ID: 21926028 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of polyelectrolyte multilayer films comprising nanoblended layers. Cho J; Quinn JF; Caruso F J Am Chem Soc; 2004 Mar; 126(8):2270-1. PubMed ID: 14982407 [TBL] [Abstract][Full Text] [Related]
13. Influence of pH and Surface Chemistry on Poly(L-lysine) Adsorption onto Solid Supports Investigated by Quartz Crystal Microbalance with Dissipation Monitoring. Choi JH; Kim SO; Linardy E; Dreaden EC; Zhdanov VP; Hammond PT; Cho NJ J Phys Chem B; 2015 Aug; 119(33):10554-65. PubMed ID: 26061703 [TBL] [Abstract][Full Text] [Related]
14. Competitive Adsorption of Plasma Proteins Using a Quartz Crystal Microbalance. Felgueiras HP; Murthy NS; Sommerfeld SD; Brás MM; Migonney V; Kohn J ACS Appl Mater Interfaces; 2016 Jun; 8(21):13207-17. PubMed ID: 27144779 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous tailoring of surface topography and chemical structure for controlled wettability. Takeshita N; Paradis LA; Oner D; McCarthy TJ; Chen W Langmuir; 2004 Sep; 20(19):8131-6. PubMed ID: 15350083 [TBL] [Abstract][Full Text] [Related]
16. Poly(acrylic acid)-poly(ethylene glycol) layers on positively charged surface coatings: molecular structure, protein resistance, and application to single protein deposition. Seehuber A; Schmidt D; Dahint R Langmuir; 2012 Jun; 28(23):8700-10. PubMed ID: 22571171 [TBL] [Abstract][Full Text] [Related]
18. 125I-radiolabeling, surface plasmon resonance, and quartz crystal microbalance with dissipation: three tools to compare protein adsorption on surfaces of different wettability. Luan Y; Li D; Wang Y; Liu X; Brash JL; Chen H Langmuir; 2014 Feb; 30(4):1029-35. PubMed ID: 24393063 [TBL] [Abstract][Full Text] [Related]
19. Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes. Muller P; Sudre G; Théodoly O Langmuir; 2008 Sep; 24(17):9541-50. PubMed ID: 18652425 [TBL] [Abstract][Full Text] [Related]
20. On the stability of the polymer brushes formed by adsorption of ionomer complexes on hydrophilic and hydrophobic surfaces. Brzozowska AM; Spruijt E; de Keizer A; Cohen Stuart MA; Norde W J Colloid Interface Sci; 2011 Jan; 353(2):380-91. PubMed ID: 20965511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]