BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23742726)

  • 1. Development of water-in-oil microemulsions with the potential of prolonged release for oral delivery of L-glutathione.
    Wen J; Du Y; Li D; Alany R
    Pharm Dev Technol; 2013; 18(6):1424-9. PubMed ID: 23742726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ phase transition from microemulsion to liquid crystal with the potential of prolonged parenteral drug delivery.
    Ren X; Svirskis D; Alany RG; Zargar-Shoshtari S; Wu Z
    Int J Pharm; 2012 Jul; 431(1-2):130-7. PubMed ID: 22548845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of microemulsions as prolonged-release injectables through in-situ phase transition.
    Wu Z; Alany RG; Tawfeek N; Falconer J; Zhang W; Hassan IM; Rutland M; Svirskis D
    J Control Release; 2014 Jan; 174():188-94. PubMed ID: 24316265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B.
    Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of self-microemulsifying and microemulsion systems for protection of prednisolone from gamma radiation.
    El Maghraby GM; Bosela AA
    Pharm Dev Technol; 2011 Jun; 16(3):237-42. PubMed ID: 20148711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytical GC-MS method to quantify methyl dihydrojasmonate in biocompatible oil-in-water microemulsions: physicochemical characterization and in vitro release studies.
    da Silva GBRF; Alécio AC; Scarpa MVC; do Egito EST; Sequinel R; Hatanaka RR; Oliveira JE; Oliveira AG
    Pharm Dev Technol; 2018 Feb; 23(2):151-157. PubMed ID: 28565943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of oil-in-water microemulsions for the oral delivery of amphotericin B.
    Silva AE; Barratt G; Chéron M; Egito ES
    Int J Pharm; 2013 Oct; 454(2):641-8. PubMed ID: 23726904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transition of a microemulsion upon addition of cyclodextrin - applications in drug delivery.
    Thakur SS; Solloway J; Stikkelman A; Seyfoddin A; Rupenthal ID
    Pharm Dev Technol; 2018 Feb; 23(2):167-175. PubMed ID: 28828910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid spray formulations of xibornol by using self-microemulsifying drug delivery systems.
    Cirri M; Mura P; Mora PC
    Int J Pharm; 2007 Aug; 340(1-2):84-91. PubMed ID: 17531411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation.
    Chan J; Maghraby GM; Craig JP; Alany RG
    Int J Pharm; 2007 Jan; 328(1):65-71. PubMed ID: 17092668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions.
    Li P; Ghosh A; Wagner RF; Krill S; Joshi YM; Serajuddin AT
    Int J Pharm; 2005 Jan; 288(1):27-34. PubMed ID: 15607255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation.
    Nesamony J; Shah IS; Kalra A; Jung R
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1253-63. PubMed ID: 23837519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.
    McClements DJ
    Adv Colloid Interface Sci; 2012 Jun; 174():1-30. PubMed ID: 22475330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of pH responsive novel emulsion adjuvant for oral immunization and in vivo evaluation.
    Malik B; Gupta RK; Rath G; Goyal AK
    Eur J Pharm Biopharm; 2014 Aug; 87(3):589-97. PubMed ID: 24681295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of starch Pickering emulsions for potential applications in topical formulations.
    Marku D; Wahlgren M; Rayner M; Sjöö M; Timgren A
    Int J Pharm; 2012 May; 428(1-2):1-7. PubMed ID: 22366058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization, sterility validation, and in vitro cell toxicity studies of microemulsions possessing potential parenteral applications.
    Nesamony J; Zachar CL; Jung R; Williams FE; Nauli S
    Drug Dev Ind Pharm; 2013 Feb; 39(2):240-51. PubMed ID: 22480266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation and characterization of liquid crystal systems containing azelaic acid for topical delivery.
    Aytekin M; Gursoy RN; Ide S; Soylu EH; Hekimoglu S
    Drug Dev Ind Pharm; 2013 Feb; 39(2):228-39. PubMed ID: 22480294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.
    Rozman B; Zvonar A; Falson F; Gasperlin M
    AAPS PharmSciTech; 2009; 10(1):54-61. PubMed ID: 19148763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.