These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 23742799)
41. The involvement of dopamine in the modulation of sleep and waking. Monti JM; Monti D Sleep Med Rev; 2007 Apr; 11(2):113-33. PubMed ID: 17275369 [TBL] [Abstract][Full Text] [Related]
42. Infusion of brain-derived neurotrophic factor into the ventral tegmental area switches the substrates mediating ethanol motivation. Ting-A-Kee R; Vargas-Perez H; Bufalino MR; Bahi A; Dreyer JL; Tyndale RF; van der Kooy D Eur J Neurosci; 2013 Mar; 37(6):996-1003. PubMed ID: 23279128 [TBL] [Abstract][Full Text] [Related]
43. Effects of acute and repeated administration of amisulpride, a dopamine D2/D3 receptor antagonist, on the electrical activity of midbrain dopaminergic neurons. Di Giovanni G; Di Mascio M; Di Matteo V; Esposito E J Pharmacol Exp Ther; 1998 Oct; 287(1):51-7. PubMed ID: 9765321 [TBL] [Abstract][Full Text] [Related]
44. GABAA receptors in VTA mediate the morphine-induced release of ascorbic acid in rat nucleus accumbens. Sun JY; Yang JY; Wang F; Hou Y; Dong YX; Wu CF Brain Res; 2011 Jan; 1368():52-8. PubMed ID: 20965157 [TBL] [Abstract][Full Text] [Related]
45. Conditioned Reward of Opioids, but not Psychostimulants, is Impaired in GABA-A Receptor δ Subunit Knockout Mice. Siivonen MS; de Miguel E; Aaltio J; Manner AK; Vahermo M; Yli-Kauhaluoma J; Linden AM; Aitta-Aho T; Korpi ER Basic Clin Pharmacol Toxicol; 2018 Nov; 123(5):558-566. PubMed ID: 29781560 [TBL] [Abstract][Full Text] [Related]
46. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents. Dickson SL; Hrabovszky E; Hansson C; Jerlhag E; Alvarez-Crespo M; Skibicka KP; Molnar CS; Liposits Z; Engel JA; Egecioglu E Neuroscience; 2010 Dec; 171(4):1180-6. PubMed ID: 20933579 [TBL] [Abstract][Full Text] [Related]
47. Chronic nicotine modifies the effects of morphine on extracellular striatal dopamine and ventral tegmental GABA. Vihavainen T; Relander TR; Leiviskä R; Airavaara M; Tuominen RK; Ahtee L; Piepponen TP J Neurochem; 2008 Nov; 107(3):844-54. PubMed ID: 18786163 [TBL] [Abstract][Full Text] [Related]
48. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area. Ouachikh O; Dieb W; Durif F; Hafidi A Behav Brain Res; 2013 Sep; 252():24-31. PubMed ID: 23727149 [TBL] [Abstract][Full Text] [Related]
49. Anti-opioid effects of neuropeptide FF receptors in the ventral tegmental area. Kersanté F; Wang JY; Chen JC; Mollereau C; Zajac JM Neurosci Lett; 2011 Jan; 488(3):305-9. PubMed ID: 21111027 [TBL] [Abstract][Full Text] [Related]
50. Distribution of neuropeptide FF (NPFF) receptors in correlation with morphine-induced reward in the rat brain. Wu CH; Tao PL; Huang EY Peptides; 2010 Jul; 31(7):1374-82. PubMed ID: 20381562 [TBL] [Abstract][Full Text] [Related]
51. Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Harris GC; Wimmer M; Byrne R; Aston-Jones G Neuroscience; 2004; 129(3):841-7. PubMed ID: 15541905 [TBL] [Abstract][Full Text] [Related]
52. Cholinergic tone in ventral tegmental area: Functional organization and behavioral implications. Zhang C; Liu X; Zhou P; Zhang J; He W; Yuan TF Neurochem Int; 2018 Mar; 114():127-133. PubMed ID: 29438716 [TBL] [Abstract][Full Text] [Related]
53. Connexin-36-positive gap junctions in ventral tegmental area GABA neurons sustain opiate dependence. Maal-Bared G; Yee M; Harding EK; Ghebreselassie M; Bergamini M; Choy R; Kim E; Di Vito S; Patel M; Amirzadeh M; Grieder TE; Coles BL; Nagy JI; Bonin RP; Steenland HW; van der Kooy D Eur J Neurosci; 2024 Jun; 59(12):3422-3444. PubMed ID: 38679044 [TBL] [Abstract][Full Text] [Related]
54. Effects of aging on the cholinergic innervation of the rat ventral tegmental area: A stereological study. Pereira PA; Coelho J; Silva A; Madeira MD Exp Gerontol; 2021 Jun; 148():111298. PubMed ID: 33652122 [TBL] [Abstract][Full Text] [Related]
55. Knockouts reveal overlapping functions of M(2) and M(4) muscarinic receptors and evidence for a local glutamatergic circuit within the laterodorsal tegmental nucleus. Kohlmeier KA; Ishibashi M; Wess J; Bickford ME; Leonard CS J Neurophysiol; 2012 Nov; 108(10):2751-66. PubMed ID: 22956788 [TBL] [Abstract][Full Text] [Related]
57. Ghrelin Recruits Specific Subsets of Dopamine and GABA Neurons of Different Ventral Tegmental Area Sub-nuclei. Cornejo MP; Barrile F; De Francesco PN; Portiansky EL; Reynaldo M; Perello M Neuroscience; 2018 Nov; 392():107-120. PubMed ID: 30268780 [TBL] [Abstract][Full Text] [Related]
58. Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. Nader K; van der Kooy D J Neurosci; 1997 Jan; 17(1):383-90. PubMed ID: 8987763 [TBL] [Abstract][Full Text] [Related]
59. Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons. Holmstrand EC; Sesack SR Brain Struct Funct; 2011 Nov; 216(4):331-45. PubMed ID: 21556793 [TBL] [Abstract][Full Text] [Related]
60. Leptin Receptor Expressing Neurons in the Substantia Nigra Regulate Locomotion, and in The Ventral Tegmental Area Motivation and Feeding. de Vrind VAJ; van 't Sant LJ; Rozeboom A; Luijendijk-Berg MCM; Omrani A; Adan RAH Front Endocrinol (Lausanne); 2021; 12():680494. PubMed ID: 34276560 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]