These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23743046)

  • 1. Optically transparent electrorheological fluid with urea-modified silica nanoparticles and its haptic display application.
    Liu YD; Lee BM; Park TS; Kim JE; Choi HJ; Booh SW
    J Colloid Interface Sci; 2013 Aug; 404():56-61. PubMed ID: 23743046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics.
    Zhang WL; Choi HJ
    Langmuir; 2012 May; 28(17):7055-62. PubMed ID: 22486527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrorheology of graphene oxide.
    Zhang WL; Liu YD; Choi HJ; Kim SG
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2267-72. PubMed ID: 22476845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Electrorheological Response of Cellulose: A Double Effect of Modification by Urea-Terminated Silane.
    Liu Z; Chen P; Jin X; Wang LM; Liu YD; Choi HJ
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric Nanoparticle-Coated Pickering Emulsion-Synthesized Conducting Polyaniline Hybrid Particles and Their Electrorheological Study.
    Jun CS; Kwon SH; Choi HJ; Seo Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44811-44819. PubMed ID: 29193955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroresponsive Polymer-Inorganic Semiconducting Composite (MCTP-Fe
    Dong YZ; Kwon SH; Choi HJ; Puthiaraj P; Ahn WS
    ACS Omega; 2018 Dec; 3(12):17246-17253. PubMed ID: 31458340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; PÅ‚ocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology.
    Liu YD; Fang FF; Choi HJ
    Langmuir; 2010 Aug; 26(15):12849-54. PubMed ID: 20593791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of potato starch and its electrorheological suspension.
    Sung JH; Park DP; Park BJ; Choi HJ; Jhon MS
    Biomacromolecules; 2005; 6(4):2182-8. PubMed ID: 16004461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials.
    Hong JY; Choi M; Kim C; Jang J
    J Colloid Interface Sci; 2010 Jul; 347(2):177-82. PubMed ID: 20416879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preparation and electrorheological behavior of bowl-like titanium oxide nanoparticles.
    He K; Wen Q; Wang C; Wang B; Yu S; Hao C; Chen K
    Soft Matter; 2017 Oct; 13(41):7677-7688. PubMed ID: 28991302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Electrorheological Response of Graphene Oxide/Polydiphenylamine Microsheet Composite Particles.
    Gao CY; Kim MH; Jin HJ; Choi HJ
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32878240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields.
    Kwon SH; Liu YD; Choi HJ
    J Colloid Interface Sci; 2015 Feb; 440():9-15. PubMed ID: 25460683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrorheological Characteristics of Poly(diphenylamine)/magnetite Composite-Based Suspension.
    Dong YZ; Choi HJ
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31505786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.