These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23743103)

  • 1. Comparative study of standing wave reduction methods using random modulation for transcranial ultrasonication.
    Furuhata H; Saito O
    Ultrasound Med Biol; 2013 Aug; 39(8):1440-50. PubMed ID: 23743103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.
    Salomir R; Petrusca L; Auboiroux V; Muller A; Vargas MI; Morel DR; Goget T; Breguet R; Terraz S; Hopple J; Montet X; Becker CD; Viallon M
    Invest Radiol; 2013 Jun; 48(6):366-80. PubMed ID: 23344514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery.
    Connor CW; Hynynen K
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1693-706. PubMed ID: 15490817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical study of transcranial focused ultrasound beam propagation at low frequency.
    Yin X; Hynynen K
    Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volumetric MR-HIFU ablation of uterine fibroids: role of treatment cell size in the improvement of energy efficiency.
    Kim YS; Keserci B; Partanen A; Rhim H; Lim HK; Park MJ; Köhler MO
    Eur J Radiol; 2012 Nov; 81(11):3652-9. PubMed ID: 21959213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of transcranial focusing thermal deposition in nonlinear HIFU brain surgery by numerical simulation.
    Ding X; Wang Y; Zhang Q; Zhou W; Wang P; Luo M; Jian X
    Phys Med Biol; 2015 May; 60(10):3975-98. PubMed ID: 25919037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leap behavior of ultrasonic standing waves in the liquids.
    Kozhemyakin GN
    Ultrasonics; 2014 Feb; 54(2):731-6. PubMed ID: 24125532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-phase-matching for third harmonic generation in noble gases employing ultrasound.
    Sapaev UK; Babushkin I; Herrmann J
    Opt Express; 2012 Sep; 20(20):22753-62. PubMed ID: 23037426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standing-wave suppression for transcranial ultrasound by random modulation.
    Tang SC; Clement GT
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):203-5. PubMed ID: 19695991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.
    Knoop C; Fritsching U
    Ultrasonics; 2014 Mar; 54(3):763-9. PubMed ID: 24152872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substantial fluctuation of acoustic intensity transmittance through a bone-phantom plate and its equalization by modulation of ultrasound frequency.
    Saito O; Wang Z; Mitsumura H; Ogawa T; Iguchi Y; Yokoyama M
    Ultrasonics; 2015 May; 59():94-101. PubMed ID: 25702201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase.
    Salomir R; Viallon M; Kickhefel A; Roland J; Morel DR; Petrusca L; Auboiroux V; Goget T; Terraz S; Becker CD; Gross P
    IEEE Trans Med Imaging; 2012 Feb; 31(2):287-301. PubMed ID: 21937345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-clinical study of in vivo magnetic resonance-guided bubble-enhanced heating in pig liver.
    Elbes D; Denost Q; Laurent C; Trillaud H; Rullier A; Quesson B
    Ultrasound Med Biol; 2013 Aug; 39(8):1388-97. PubMed ID: 23562012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus.
    Zhang L; Chen WZ; Liu YJ; Hu X; Zhou K; Chen L; Peng S; Zhu H; Zou HL; Bai J; Wang ZB
    Eur J Radiol; 2010 Feb; 73(2):396-403. PubMed ID: 19108974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational aspects in high intensity ultrasonic surgery planning.
    Pulkkinen A; Hynynen K
    Comput Med Imaging Graph; 2010 Jan; 34(1):69-78. PubMed ID: 19740625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids.
    Kim YS; Trillaud H; Rhim H; Lim HK; Mali W; Voogt M; Barkhausen J; Eckey T; Köhler MO; Keserci B; Mougenot C; Sokka SD; Soini J; Nieminen HJ
    Radiology; 2012 Nov; 265(2):627-37. PubMed ID: 23012465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.
    Declercq NF
    Ultrasonics; 2014 Feb; 54(2):609-13. PubMed ID: 24079915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of high-power ultrasound-industrial applications and measurement methods.
    Harvey G; Gachagan A; Mutasa T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):481-95. PubMed ID: 24569252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of propagating and standing waves on cavitation appearance.
    Kenis AM; Grinfeld J; Zadicario E; Vitek S
    Ultrasound Med Biol; 2012 Jan; 38(1):99-108. PubMed ID: 22104538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.