These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23743337)

  • 21. Suppression of bystander T helper 1 cells by iris pigment epithelium-inducing regulatory T cells via negative costimulatory signals.
    Sugita S; Horie S; Yamada Y; Keino H; Usui Y; Takeuchi M; Mochizuki M
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2529-36. PubMed ID: 19959639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous IL-4 and IFN-gamma are essential for expression of Th2, but not Th1 cytokine message during the early differentiation of human CD4+ T helper cells.
    Torres KC; Dutra WO; Gollob KJ
    Hum Immunol; 2004 Nov; 65(11):1328-35. PubMed ID: 15556683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Th17 and regulatory T lymphocytes in primary biliary cirrhosis and systemic sclerosis as models of autoimmune fibrotic diseases.
    Fenoglio D; Bernuzzi F; Battaglia F; Parodi A; Kalli F; Negrini S; De Palma R; Invernizzi P; Filaci G
    Autoimmun Rev; 2012 Dec; 12(2):300-4. PubMed ID: 22634708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarization of IL-4- and IFN-gamma-producing CD4+ T cells following activation of naive CD4+ T cells.
    Nakamura T; Kamogawa Y; Bottomly K; Flavell RA
    J Immunol; 1997 Feb; 158(3):1085-94. PubMed ID: 9013946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A network model for the control of the differentiation process in Th cells.
    Mendoza L
    Biosystems; 2006 May; 84(2):101-14. PubMed ID: 16386358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD4 and CD8 are positive regulators of T cell receptor signal transduction in early T cell differentiation.
    Gilliland LK; Teh HS; Uckun FM; Norris NA; Teh SJ; Schieven GL; Ledbetter JA
    J Immunol; 1991 Mar; 146(6):1759-65. PubMed ID: 1706380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making.
    Yates A; Callard R; Stark J
    J Theor Biol; 2004 Nov; 231(2):181-96. PubMed ID: 15380383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Migration pathways of recirculating murine B cells and CD4+ and CD8+ T lymphocytes.
    Pellas TC; Weiss L
    Am J Anat; 1990 Apr; 187(4):355-73. PubMed ID: 2141229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thymic regulatory T cells.
    Maggi E; Cosmi L; Liotta F; Romagnani P; Romagnani S; Annunziato F
    Autoimmun Rev; 2005 Nov; 4(8):579-86. PubMed ID: 16214099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity.
    Huber M; Heink S; Grothe H; Guralnik A; Reinhard K; Elflein K; Hünig T; Mittrücker HW; Brüstle A; Kamradt T; Lohoff M
    Eur J Immunol; 2009 Jul; 39(7):1716-25. PubMed ID: 19544308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic simulation of regulatory networks using SQUAD.
    Di Cara A; Garg A; De Micheli G; Xenarios I; Mendoza L
    BMC Bioinformatics; 2007 Nov; 8():462. PubMed ID: 18039375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A robust model to describe the differentiation of T-helper cells.
    Mendoza L; Pardo F
    Theory Biosci; 2010 Dec; 129(4):283-93. PubMed ID: 20922578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irreversibility of T-Cell Specification: Insights from Computational Modelling of a Minimal Network Architecture.
    Manesso E; Kueh HY; Freedman G; Rothenberg EV; Peterson C
    PLoS One; 2016; 11(8):e0161260. PubMed ID: 27551921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Network Model to Describe the Terminal Differentiation of B Cells.
    Méndez A; Mendoza L
    PLoS Comput Biol; 2016 Jan; 12(1):e1004696. PubMed ID: 26751566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data-driven mechanistic analysis method to reveal dynamically evolving regulatory networks.
    Intosalmi J; Nousiainen K; Ahlfors H; Lähdesmäki H
    Bioinformatics; 2016 Jun; 32(12):i288-i296. PubMed ID: 27307629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network.
    Ramírez C; Mendoza L
    Bioinformatics; 2018 Apr; 34(7):1174-1182. PubMed ID: 29186334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Speed-dependent cellular decision making in nonequilibrium genetic circuits.
    Nené NR; Garca-Ojalvo J; Zaikin A
    PLoS One; 2012; 7(3):e32779. PubMed ID: 22427883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An enriched network motif family regulates multistep cell fate transitions with restricted reversibility.
    Ye Y; Kang X; Bailey J; Li C; Hong T
    PLoS Comput Biol; 2019 Mar; 15(3):e1006855. PubMed ID: 30845219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dynamical model of genetic networks for cell differentiation.
    Villani M; Barbieri A; Serra R
    PLoS One; 2011 Mar; 6(3):e17703. PubMed ID: 21464974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory network analysis acceleration with reconfigurable hardware.
    Miskov-Zivanov N; Bresticker A; Krishnaswamy D; Venkatakrishnan S; Kashinkunti P; Marculescu D; Faeder JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():149-52. PubMed ID: 22254272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.