These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23743428)

  • 1. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria.
    Zhao W; Zhang Y; Du B; Wei D; Wei Q; Zhao Y
    Bioresour Technol; 2013 Aug; 142():240-5. PubMed ID: 23743428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach.
    Mullai P; Yogeswari MK; Sridevi K
    Bioresour Technol; 2013 Aug; 141():212-9. PubMed ID: 23582220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum.
    Beckers L; Hiligsmann S; Lambert SD; Heinrichs B; Thonart P
    Bioresour Technol; 2013 Apr; 133():109-17. PubMed ID: 23428815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions.
    Liu Q; Zhang XL; Jun Z; Zhao AH; Chen SP; Liu F; Tai J; Liu JY; Qian GR
    Bioresour Technol; 2012 Jun; 113():37-43. PubMed ID: 22445267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Ni(2+) concentration on biohydrogen production.
    Wang J; Wan W
    Bioresour Technol; 2008 Dec; 99(18):8864-8. PubMed ID: 18514512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement effect of hematite nanoparticles on fermentative hydrogen production.
    Han H; Cui M; Wei L; Yang H; Shen J
    Bioresour Technol; 2011 Sep; 102(17):7903-9. PubMed ID: 21696950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (II) ion and phytogenic palladium nanoparticles.
    Mohanraj S; Anbalagan K; Kodhaiyolii S; Pugalenthi V
    J Biotechnol; 2014 Dec; 192 Pt A():87-95. PubMed ID: 25456058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia.
    Zagrodnik R; Seifert K
    Pol J Microbiol; 2020 Sep; 69(1):109-120. PubMed ID: 32189481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.
    Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS
    Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement.
    Liu Q; Zhang X; Zhou Y; Zhao A; Chen S; Qian G; Xu ZP
    Bioresour Technol; 2011 Sep; 102(18):8661-8. PubMed ID: 21470854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5.
    Wang X; Jin B
    J Biosci Bioeng; 2009 Feb; 107(2):138-44. PubMed ID: 19217551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108.
    Zhao X; Xing D; Fu N; Liu B; Ren N
    Bioresour Technol; 2011 Sep; 102(18):8432-6. PubMed ID: 21421301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor.
    Won SG; Lau AK
    Bioresour Technol; 2011 Jul; 102(13):6876-83. PubMed ID: 21530239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics study of fermentative hydrogen production from liquid swine manure supplemented with glucose under controlled pH.
    Wu X; Zhu J; Miller C
    J Environ Sci Health B; 2013; 48(6):477-85. PubMed ID: 23452213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of Fe2+ concentration on kinetics of biohydrogen production].
    Wan W; Wang JL
    Huan Jing Ke Xue; 2008 Sep; 29(9):2633-6. PubMed ID: 19068656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.
    Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE
    Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production.
    Luo G; Karakashev D; Xie L; Zhou Q; Angelidaki I
    Biotechnol Bioeng; 2011 Aug; 108(8):1816-27. PubMed ID: 21381001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.