BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23743511)

  • 1. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers.
    Li L; Benson CH; Lawson EM
    J Contam Hydrol; 2006 Feb; 83(1-2):89-121. PubMed ID: 16386821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of long-term performance of granular iron permeable reactive barriers: field-scale evaluation.
    Jeen SW; Gillham RW; Przepiora A
    J Contam Hydrol; 2011 Apr; 123(1-2):50-64. PubMed ID: 21237528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron.
    Prommer H; Aziz LH; Bolaño N; Taubald H; Schüth C
    J Contam Hydrol; 2008 Apr; 97(1-2):13-26. PubMed ID: 18267347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dissolved inorganic carbon and calcium on gas formation and accumulation in iron permeable reactive barriers.
    Ruhl AS; Weber A; Jekel M
    J Contam Hydrol; 2012 Nov; 142-143():22-32. PubMed ID: 23069647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of mineral fouling on hydraulic behavior of permeable reactive barriers.
    Lin L; Benson CH; Lawson EM
    Ground Water; 2005; 43(4):582-96. PubMed ID: 16029183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions.
    Wu Y; Versteeg R; Slater L; LaBrecque D
    J Contam Hydrol; 2009 May; 106(3-4):131-43. PubMed ID: 19342119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of trichloroethene and hexavalent chromium by granular iron in the presence of dissolved CaCO3.
    Jeen SW; Yang Y; Gui L; Gillham RW
    J Contam Hydrol; 2013 Jan; 144(1):108-21. PubMed ID: 23247400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging.
    Kouznetsova I; Bayer P; Ebert M; Finkel M
    J Contam Hydrol; 2007 Feb; 90(1-2):58-80. PubMed ID: 17113680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers.
    Li L; Benson CH
    J Hazard Mater; 2010 Sep; 181(1-3):170-80. PubMed ID: 20510511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments and numerical simulation.
    suk O J; Jeen SW; Gillham RW; Gui L
    J Contam Hydrol; 2009 Jan; 103(3-4):145-56. PubMed ID: 19004521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: characterization and evaluation of phase stability.
    Lee TR; Wilkin RT
    J Contam Hydrol; 2010 Jul; 116(1-4):47-57. PubMed ID: 20554346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive transport modeling of trichloroethene treatment with declining reactivity of iron.
    Jeen SW; Mayer KU; Gillham RW; Blowes DW
    Environ Sci Technol; 2007 Feb; 41(4):1432-8. PubMed ID: 17593753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE.
    Jeen SW; Gillham RW; Blowes DW
    Environ Sci Technol; 2006 Oct; 40(20):6432-7. PubMed ID: 17120576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling gas formation and mineral precipitation in a granular iron column.
    Jeen SW; Amos RT; Blowes DW
    Environ Sci Technol; 2012 Jun; 46(12):6742-9. PubMed ID: 22540940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.