BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 23743613)

  • 1. Control of density and LSPR of Au nanoparticles on graphene.
    Lee S; Lee Mh; Shin HJ; Choi D
    Nanotechnology; 2013 Jul; 24(27):275702. PubMed ID: 23743613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.
    Iyer GR; Wang J; Wells G; Guruvenket S; Payne S; Bradley M; Borondics F
    ACS Nano; 2014 Jun; 8(6):6353-62. PubMed ID: 24860924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer.
    Zhang J; Sun Y; Wu Q; Gao Y; Zhang H; Bai Y; Song D
    Colloids Surf B Biointerfaces; 2014 Apr; 116():211-8. PubMed ID: 24480068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene plasmon enhanced photoluminescence in ZnO microwires.
    Liu R; Fu XW; Meng J; Bie YQ; Yu DP; Liao ZM
    Nanoscale; 2013 Jun; 5(12):5294-8. PubMed ID: 23695346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical sensing platform for L-CySH based on nearly uniform Au nanoparticles decorated graphene nanosheets.
    Xu F; Wang F; Yang D; Gao Y; Li H
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():292-8. PubMed ID: 24656381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating light absorption of graphene using plasmonic nanoparticles.
    Zhu J; Liu QH; Lin T
    Nanoscale; 2013 Sep; 5(17):7785-9. PubMed ID: 23864077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions.
    Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR
    Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications.
    Kameyama T; Ohno Y; Kurimoto T; Okazaki K; Uematsu T; Kuwabata S; Torimoto T
    Phys Chem Chem Phys; 2010 Feb; 12(8):1804-11. PubMed ID: 20145845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the doping type and level of graphene with different gold configurations.
    Wu Y; Jiang W; Ren Y; Cai W; Lee WH; Li H; Piner RD; Pope CW; Hao Y; Ji H; Kang J; Ruoff RS
    Small; 2012 Oct; 8(20):3129-36. PubMed ID: 22826024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene.
    Lee J; Kim J; Ahmed SR; Zhou H; Kim JM; Lee J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21380-8. PubMed ID: 25394727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoarray-based biomolecular detection using individual Au nanoparticles with minimized localized surface plasmon resonance variations.
    Guo L; Ferhan AR; Lee K; Kim DH
    Anal Chem; 2011 Apr; 83(7):2605-12. PubMed ID: 21388163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant optical response from graphene--plasmonic system.
    Wang P; Zhang W; Liang O; Pantoja M; Katzer J; Schroeder T; Xie YH
    ACS Nano; 2012 Jul; 6(7):6244-9. PubMed ID: 22712497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide.
    Zan X; Fang Z; Wu J; Xiao F; Huo F; Duan H
    Biosens Bioelectron; 2013 Nov; 49():71-8. PubMed ID: 23722044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor.
    Hu T; Lin Y; Yan J; Di J
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jun; 110():72-7. PubMed ID: 23557775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis.
    Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z
    Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films.
    Li C; Li Z; Li S; Zhang Y; Sun B; Yu Y; Ren H; Jiang S; Yue W
    Opt Express; 2020 Mar; 28(5):6071-6083. PubMed ID: 32225864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS.
    Liang X; You T; Liu D; Lang X; Tan E; Shi J; Yin P; Guo L
    Phys Chem Chem Phys; 2015 Apr; 17(15):10176-81. PubMed ID: 25793752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.