These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 23743709)
1. A novel microfluidic co-culture system for investigation of bacterial cancer targeting. Hong JW; Song S; Shin JH Lab Chip; 2013 Aug; 13(15):3033-40. PubMed ID: 23743709 [TBL] [Abstract][Full Text] [Related]
2. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Park D; Park SJ; Cho S; Lee Y; Lee YK; Min JJ; Park BJ; Ko SY; Park JO; Park S Biotechnol Bioeng; 2014 Jan; 111(1):134-43. PubMed ID: 23893511 [TBL] [Abstract][Full Text] [Related]
3. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Choi E; Chang HK; Lim CY; Kim T; Park J Lab Chip; 2012 Oct; 12(20):3968-75. PubMed ID: 22907568 [TBL] [Abstract][Full Text] [Related]
4. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Saadi W; Wang SJ; Lin F; Jeon NL Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting. Song J; Zhang Y; Zhang C; Du X; Guo Z; Kuang Y; Wang Y; Wu P; Zou K; Zou L; Lv J; Wang Q Sci Rep; 2018 Apr; 8(1):6394. PubMed ID: 29686328 [TBL] [Abstract][Full Text] [Related]
6. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Ma H; Liu T; Qin J; Lin B Electrophoresis; 2010 May; 31(10):1599-605. PubMed ID: 20414883 [TBL] [Abstract][Full Text] [Related]
10. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration. Lee JM; Seo HI; Bae JH; Chung BG Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441 [TBL] [Abstract][Full Text] [Related]
11. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis. Si G; Yang W; Bi S; Luo C; Ouyang Q Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931 [TBL] [Abstract][Full Text] [Related]
12. Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro. Kasinskas RW; Forbes NS Biotechnol Bioeng; 2006 Jul; 94(4):710-21. PubMed ID: 16470601 [TBL] [Abstract][Full Text] [Related]
13. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Liu T; Lin B; Qin J Lab Chip; 2010 Jul; 10(13):1671-7. PubMed ID: 20414488 [TBL] [Abstract][Full Text] [Related]
14. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform. Gallego-Perez D; Higuita-Castro N; Sharma S; Reen RK; Palmer AF; Gooch KJ; Lee LJ; Lannutti JJ; Hansford DJ Lab Chip; 2010 Mar; 10(6):775-82. PubMed ID: 20221567 [TBL] [Abstract][Full Text] [Related]
15. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Leclerc E; Sakai Y; Fujii T Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878 [TBL] [Abstract][Full Text] [Related]
17. A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix. Aizel K; Clark AG; Simon A; Geraldo S; Funfak A; Vargas P; Bibette J; Vignjevic DM; Bremond N Lab Chip; 2017 Nov; 17(22):3851-3861. PubMed ID: 29022983 [TBL] [Abstract][Full Text] [Related]
18. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Leclerc E; El Kirat K; Griscom L Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187 [TBL] [Abstract][Full Text] [Related]
19. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Chang R; Emami K; Wu H; Sun W Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286 [TBL] [Abstract][Full Text] [Related]