These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 23743709)
21. High-throughput combinatorial cell co-culture using microfluidics. Tumarkin E; Tzadu L; Csaszar E; Seo M; Zhang H; Lee A; Peerani R; Purpura K; Zandstra PW; Kumacheva E Integr Biol (Camb); 2011 Jun; 3(6):653-62. PubMed ID: 21526262 [TBL] [Abstract][Full Text] [Related]
22. Numerical simulation of mass transport in a microchannel bioreactor with cell micropatterning. Zeng Y; Lee TS; Yu P; Low HT J Biomech Eng; 2008 Jun; 130(3):031018. PubMed ID: 18532867 [TBL] [Abstract][Full Text] [Related]
23. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Kasinskas RW; Forbes NS Cancer Res; 2007 Apr; 67(7):3201-9. PubMed ID: 17409428 [TBL] [Abstract][Full Text] [Related]
24. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients. Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911 [TBL] [Abstract][Full Text] [Related]
25. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358 [TBL] [Abstract][Full Text] [Related]
26. A microfluidic array with cellular valving for single cell co-culture. Frimat JP; Becker M; Chiang YY; Marggraf U; Janasek D; Hengstler JG; Franzke J; West J Lab Chip; 2011 Jan; 11(2):231-7. PubMed ID: 20978708 [TBL] [Abstract][Full Text] [Related]
27. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber. Wang X; Long T; Ford RM Biotechnol Bioeng; 2012 Jul; 109(7):1622-8. PubMed ID: 22252781 [TBL] [Abstract][Full Text] [Related]
28. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Lanning LM; Ford RM; Long T Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417 [TBL] [Abstract][Full Text] [Related]
29. Cancer-cell killing by engineered Salmonella imaged by multiphoton tomography in live mice. Uchugonova A; Zhao M; Zhang Y; Weinigel M; König K; Hoffman RM Anticancer Res; 2012 Oct; 32(10):4331-7. PubMed ID: 23060555 [TBL] [Abstract][Full Text] [Related]
30. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Chung S; Sudo R; Mack PJ; Wan CR; Vickerman V; Kamm RD Lab Chip; 2009 Jan; 9(2):269-75. PubMed ID: 19107284 [TBL] [Abstract][Full Text] [Related]
31. Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources. Kim M; Kim SH; Lee SK; Kim T Analyst; 2011 Aug; 136(16):3238-43. PubMed ID: 21716994 [TBL] [Abstract][Full Text] [Related]
32. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Wang HY; Bhunia AK; Lu C Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400 [TBL] [Abstract][Full Text] [Related]
33. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Snyder JE; Hamid Q; Wang C; Chang R; Emami K; Wu H; Sun W Biofabrication; 2011 Sep; 3(3):034112. PubMed ID: 21881168 [TBL] [Abstract][Full Text] [Related]
34. "Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids. Schütte J; Hagmeyer B; Holzner F; Kubon M; Werner S; Freudigmann C; Benz K; Böttger J; Gebhardt R; Becker H; Stelzle M Biomed Microdevices; 2011 Jun; 13(3):493-501. PubMed ID: 21347825 [TBL] [Abstract][Full Text] [Related]
35. Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis toward L-serine. Dahlquist FW; Elwell RA; Lovely PS J Supramol Struct; 1976; 4(3):329-42. PubMed ID: 772315 [TBL] [Abstract][Full Text] [Related]
36. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Sung JH; Shuler ML Lab Chip; 2009 May; 9(10):1385-94. PubMed ID: 19417905 [TBL] [Abstract][Full Text] [Related]
37. Elucidating in vitro cell-cell interaction using a microfluidic coculture system. Wei CW; Cheng JY; Young TH Biomed Microdevices; 2006 Mar; 8(1):65-71. PubMed ID: 16491333 [TBL] [Abstract][Full Text] [Related]
38. Circular compartmentalized microfluidic platform: Study of axon-glia interactions. Hosmane S; Yang IH; Ruffin A; Thakor N; Venkatesan A Lab Chip; 2010 Mar; 10(6):741-7. PubMed ID: 20221562 [TBL] [Abstract][Full Text] [Related]
39. Hydrogel-based microfluidic systems for co-culture of cells. Chen MC; Gupta M; Cheung KC Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802 [TBL] [Abstract][Full Text] [Related]
40. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Maschmeyer I; Lorenz AK; Schimek K; Hasenberg T; Ramme AP; Hübner J; Lindner M; Drewell C; Bauer S; Thomas A; Sambo NS; Sonntag F; Lauster R; Marx U Lab Chip; 2015 Jun; 15(12):2688-99. PubMed ID: 25996126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]