These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23744038)

  • 1. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection.
    Toomey ME; Panaram K; Fast EM; Beatty C; Frydman HM
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10788-93. PubMed ID: 23744038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restriction of
    Strunov A; Schmidt K; Kapun M; Miller WJ
    mBio; 2022 Apr; 13(2):e0386321. PubMed ID: 35357208
    [No Abstract]   [Full Text] [Related]  

  • 3. Wolbachia infect ovaries in the course of their maturation: last minute passengers and priority travellers?
    Genty LM; Bouchon D; Raimond M; Bertaux J
    PLoS One; 2014; 9(4):e94577. PubMed ID: 24722673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Global Spread of wRi-like Wolbachia across Multiple Drosophila.
    Turelli M; Cooper BS; Richardson KM; Ginsberg PS; Peckenpaugh B; Antelope CX; Kim KJ; May MR; Abrieux A; Wilson DA; Bronski MJ; Moore BR; Gao JJ; Eisen MB; Chiu JC; Conner WR; Hoffmann AA
    Curr Biol; 2018 Mar; 28(6):963-971.e8. PubMed ID: 29526588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative methods for assessing local and bodywide contributions to Wolbachia titer in maternal germline cells of Drosophila.
    Christensen S; Camacho M; Sharmin Z; Momtaz AJMZ; Perez L; Navarro G; Triana J; Samarah H; Turelli M; Serbus LR
    BMC Microbiol; 2019 Sep; 19(1):206. PubMed ID: 31481018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heritable endosymbionts of Drosophila.
    Mateos M; Castrezana SJ; Nankivell BJ; Estes AM; Markow TA; Moran NA
    Genetics; 2006 Sep; 174(1):363-76. PubMed ID: 16783009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of Wolbachia maternal transmission and localization in host ovaries.
    Hague MTJ; Wheeler TB; Cooper BS
    Commun Biol; 2024 Jun; 7(1):727. PubMed ID: 38877196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive Selection and Horizontal Gene Transfer in the Genome of a Male-Killing Wolbachia.
    Hill T; Unckless RL; Perlmutter JI
    Mol Biol Evol; 2022 Jan; 39(1):. PubMed ID: 34662426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation.
    Grobler Y; Yun CY; Kahler DJ; Bergman CM; Lee H; Oliver B; Lehmann R
    PLoS Pathog; 2018 Nov; 14(11):e1007445. PubMed ID: 30422992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing, Signaling, and Secretion: A Review and Analysis of Systems for Regulating Host Interaction in
    Lindsey ARI
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32708808
    [No Abstract]   [Full Text] [Related]  

  • 11. Distinct Wolbachia localization patterns in oocytes of diverse host species reveal multiple strategies of maternal transmission.
    Radousky YA; Hague MTJ; Fowler S; Paneru E; Codina A; Rugamas C; Hartzog G; Cooper BS; Sullivan W
    Genetics; 2023 May; 224(1):. PubMed ID: 36911919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster.
    Newton IL; Savytskyy O; Sheehan KB
    PLoS Pathog; 2015 Apr; 11(4):e1004798. PubMed ID: 25906062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies.
    Schneider DI; Ehrman L; Engl T; Kaltenpoth M; Hua-Van A; Le Rouzic A; Miller WJ
    Behav Genet; 2019 Jan; 49(1):83-98. PubMed ID: 30456532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Wolbachia WalE1 effector alters Drosophila endocytosis.
    Martin M; López-Madrigal S; Newton ILG
    PLoS Pathog; 2024 Mar; 20(3):e1011245. PubMed ID: 38547310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Antiviral Effects of the Symbiont Bacteria
    Pimentel AC; Cesar CS; Martins M; Cogni R
    Front Immunol; 2020; 11():626329. PubMed ID: 33584729
    [No Abstract]   [Full Text] [Related]  

  • 16. Widespread prevalence of wolbachia in laboratory stocks and the implications for Drosophila research.
    Clark ME; Anderson CL; Cande J; Karr TL
    Genetics; 2005 Aug; 170(4):1667-75. PubMed ID: 15937134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Drosophila Transgenics to Identify Functions for Symbiont Effectors.
    Cortez CT; Murphy RO; Owens IM; Beckmann JF
    Methods Mol Biol; 2024; 2739():301-320. PubMed ID: 38006559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Baker's Yeast to Determine Functions of Novel Wolbachia (and Other Prokaryotic) Effectors.
    Murphy RO; Beckmann JF
    Methods Mol Biol; 2024; 2739():321-336. PubMed ID: 38006560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Enrichment of Bacterial mRNA from Host-Bacteria Total RNA Samples.
    Kumar N; Lin M; Zhao X; Ott S; Santana-Cruz I; Daugherty S; Rikihisa Y; Sadzewicz L; Tallon LJ; Fraser CM; Dunning Hotopp JC
    Sci Rep; 2016 Oct; 6():34850. PubMed ID: 27713560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions.
    Zug R; Hammerstein P
    Front Microbiol; 2015; 6():1201. PubMed ID: 26579107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.