These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23744076)

  • 1. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA.
    Burger K; Mühl B; Rohrmoser M; Coordes B; Heidemann M; Kellner M; Gruber-Eber A; Heissmeyer V; Strässer K; Eick D
    J Biol Chem; 2013 Jul; 288(29):21173-21183. PubMed ID: 23744076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes.
    Dow EC; Liu H; Rice AP
    J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing.
    Calo E; Flynn RA; Martin L; Spitale RC; Chang HY; Wysocka J
    Nature; 2015 Feb; 518(7538):249-53. PubMed ID: 25470060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse.
    Oqani RK; Lin T; Lee JE; Kim SY; Sa SJ; Woo JS; Jin DI
    Genesis; 2016 Sep; 54(9):470-82. PubMed ID: 27488304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDK9 inhibition strategy defines distinct sets of target genes.
    Garriga J; Graña X
    BMC Res Notes; 2014 May; 7():301. PubMed ID: 24886624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia.
    Yeh YY; Chen R; Hessler J; Mahoney E; Lehman AM; Heerema NA; Grever MR; Plunkett W; Byrd JC; Johnson AJ
    Oncotarget; 2015 Feb; 6(5):2667-79. PubMed ID: 25596730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Murine Cell Line Based Model of Chronic CDK9 Inhibition to Study Widespread Non-Genetic Transcriptional Elongation Defects (TEdeff) in Cancers.
    Modur V; Singh N; Muhammad B
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28S rRNA by promoting the release of U8 snoRNA.
    Srivastava L; Lapik YR; Wang M; Pestov DG
    Mol Cell Biol; 2010 Jun; 30(12):2947-56. PubMed ID: 20404093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDK9 keeps RNA polymerase II on track.
    Egloff S
    Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional role of an interleukin 6-inducible CDK9.STAT3 complex in human gamma-fibrinogen gene expression.
    Hou T; Ray S; Brasier AR
    J Biol Chem; 2007 Dec; 282(51):37091-102. PubMed ID: 17956865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation.
    Oqani RK; Kim HR; Diao YF; Park CS; Jin DI
    BMC Dev Biol; 2011 Jun; 11():33. PubMed ID: 21639898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Establishment of a Hyperactive Structure Allows the Tumour Suppressor Protein p53 to Function through P-TEFb during Limited CDK9 Kinase Inhibition.
    Albert TK; Antrecht C; Kremmer E; Meisterernst M
    PLoS One; 2016; 11(1):e0146648. PubMed ID: 26745862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription.
    Blank MF; Chen S; Poetz F; Schnölzer M; Voit R; Grummt I
    Nucleic Acids Res; 2017 Mar; 45(5):2675-2686. PubMed ID: 28426094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels.
    Burger K; Mühl B; Harasim T; Rohrmoser M; Malamoussi A; Orban M; Kellner M; Gruber-Eber A; Kremmer E; Hölzel M; Eick D
    J Biol Chem; 2010 Apr; 285(16):12416-25. PubMed ID: 20159984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription.
    Sabò A; Lusic M; Cereseto A; Giacca M
    Mol Cell Biol; 2008 Apr; 28(7):2201-12. PubMed ID: 18250157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Camptothecin releases P-TEFb from the inactive 7SK snRNP complex.
    Amente S; Gargano B; Napolitano G; Lania L; Majello B
    Cell Cycle; 2009 Apr; 8(8):1249-55. PubMed ID: 19305131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription.
    Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A
    J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo.
    Chao SH; Price DH
    J Biol Chem; 2001 Aug; 276(34):31793-9. PubMed ID: 11431468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription.
    Fu TJ; Peng J; Lee G; Price DH; Flores O
    J Biol Chem; 1999 Dec; 274(49):34527-30. PubMed ID: 10574912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development.
    Caracciolo V; Laurenti G; Romano G; Carnevale V; Cimini AM; Crozier-Fitzgerald C; Gentile Warschauer E; Russo G; Giordano A
    Cell Cycle; 2012 Mar; 11(6):1202-16. PubMed ID: 22391209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.