BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23744076)

  • 21. Cyclin-dependent kinase-9: an RNAPII kinase at the nexus of cardiac growth and death cascades.
    Sano M; Schneider MD
    Circ Res; 2004 Oct; 95(9):867-76. PubMed ID: 15514168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast.
    Sansó M; Lee KM; Viladevall L; Jacques PÉ; Pagé V; Nagy S; Racine A; St Amour CV; Zhang C; Shokat KM; Schwer B; Robert F; Fisher RP; Tanny JC
    PLoS Genet; 2012; 8(8):e1002822. PubMed ID: 22876190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer.
    Vervoort SJ; Welsh SA; Devlin JR; Barbieri E; Knight DA; Offley S; Bjelosevic S; Costacurta M; Todorovski I; Kearney CJ; Sandow JJ; Fan Z; Blyth B; McLeod V; Vissers JHA; Pavic K; Martin BP; Gregory G; Demosthenous E; Zethoven M; Kong IY; Hawkins ED; Hogg SJ; Kelly MJ; Newbold A; Simpson KJ; Kauko O; Harvey KF; Ohlmeyer M; Westermarck J; Gray N; Gardini A; Johnstone RW
    Cell; 2021 Jun; 184(12):3143-3162.e32. PubMed ID: 34004147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig.
    Oqani RK; Lin T; Lee JE; Choi KM; Shin HY; Jin DI
    PLoS One; 2016; 11(3):e0152254. PubMed ID: 27011207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosstalk between mRNA 3' end processing and transcription initiation.
    Mapendano CK; Lykke-Andersen S; Kjems J; Bertrand E; Jensen TH
    Mol Cell; 2010 Nov; 40(3):410-22. PubMed ID: 21070967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing.
    Pirngruber J; Shchebet A; Johnsen SA
    Cell Cycle; 2009 Nov; 8(22):3636-42. PubMed ID: 19844166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induced G1 cell-cycle arrest controls replication-dependent histone mRNA 3' end processing through p21, NPAT and CDK9.
    Pirngruber J; Johnsen SA
    Oncogene; 2010 May; 29(19):2853-63. PubMed ID: 20190802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor.
    Albert TK; Rigault C; Eickhoff J; Baumgart K; Antrecht C; Klebl B; Mittler G; Meisterernst M
    Br J Pharmacol; 2014 Jan; 171(1):55-68. PubMed ID: 24102143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A role for c-Myc in the regulation of ribosomal RNA processing.
    Schlosser I; Hölzel M; Mürnseer M; Burtscher H; Weidle UH; Eick D
    Nucleic Acids Res; 2003 Nov; 31(21):6148-56. PubMed ID: 14576301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases.
    Yang J; Zhao Y; Kalita M; Li X; Jamaluddin M; Tian B; Edeh CB; Wiktorowicz JE; Kudlicki A; Brasier AR
    Mol Cell Proteomics; 2015 Oct; 14(10):2701-21. PubMed ID: 26209609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CDK9: a signaling hub for transcriptional control.
    Bacon CW; D'Orso I
    Transcription; 2019 Apr; 10(2):57-75. PubMed ID: 30227759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms controlling CDK9 activity.
    Marshall RM; Grana X
    Front Biosci; 2006 Sep; 11():2598-613. PubMed ID: 16720337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional role of RNA polymerase II and P70 S6 kinase in KCl withdrawal-induced cerebellar granule neuron apoptosis.
    Padmanabhan J; Brown KR; Padilla A; Shelanski ML
    J Biol Chem; 2015 Feb; 290(9):5267-79. PubMed ID: 25568312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription.
    Ou M; Sandri-Goldin RM
    PLoS One; 2013; 8(10):e79007. PubMed ID: 24205359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B.
    Cojocaru M; Bouchard A; Cloutier P; Cooper JJ; Varzavand K; Price DH; Coulombe B
    J Biol Chem; 2011 Feb; 286(7):5012-22. PubMed ID: 21127351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective control of gene expression by CDK9 in human cells.
    Garriga J; Xie H; Obradovic Z; Graña X
    J Cell Physiol; 2010 Jan; 222(1):200-8. PubMed ID: 19780058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb).
    Qi T; Tang W; Wang L; Zhai L; Guo L; Zeng X
    J Biol Chem; 2011 Apr; 286(17):15171-81. PubMed ID: 21378166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polo-like kinase 1 inhibits the activity of positive transcription elongation factor of RNA Pol II b (P-TEFb).
    Jiang L; Huang Y; Deng M; Liu T; Lai W; Ye X
    PLoS One; 2013; 8(8):e72289. PubMed ID: 23977272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of DHX33 as a mediator of rRNA synthesis and cell growth.
    Zhang Y; Forys JT; Miceli AP; Gwinn AS; Weber JD
    Mol Cell Biol; 2011 Dec; 31(23):4676-91. PubMed ID: 21930779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation.
    Baumli S; Lolli G; Lowe ED; Troiani S; Rusconi L; Bullock AN; Debreczeni JE; Knapp S; Johnson LN
    EMBO J; 2008 Jul; 27(13):1907-18. PubMed ID: 18566585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.