These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23744185)

  • 21. Investigation of Band Alignment for Hybrid 2D-MoS
    Huan YW; Xu K; Liu WJ; Zhang H; Golosov DA; Xia CT; Yu HY; Wu XH; Sun QQ; Ding SJ
    Nanoscale Res Lett; 2019 Dec; 14(1):360. PubMed ID: 31792627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soft X-ray characterization of Zn(1-x)Sn(x)O(y) electronic structure for thin film photovoltaics.
    Kapilashrami M; Kronawitter CX; Törndahl T; Lindahl J; Hultqvist A; Wang WC; Chang CL; Mao SS; Guo J
    Phys Chem Chem Phys; 2012 Aug; 14(29):10154-9. PubMed ID: 22722780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band Offsets at κ-([Al,In]
    Schultz T; Kneiß M; Storm P; Splith D; von Wenckstern H; Grundmann M; Koch N
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8879-8885. PubMed ID: 31977187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic Structure and Band Alignment at the NiO and SrTiO
    Zhang KHL; Wu R; Tang F; Li W; Oropeza FE; Qiao L; Lazarov VK; Du Y; Payne DJ; MacManus-Driscoll JL; Blamire MG
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26549-26555. PubMed ID: 28695740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Band Alignment of Sc
    Jin EN; Hardy MT; Mock AL; Lyons JL; Kramer AR; Tadjer MJ; Nepal N; Katzer DS; Meyer DJ
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):52192-52200. PubMed ID: 33146516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Band Alignment Engineering at Cu2O/ZnO Heterointerfaces.
    Siol S; Hellmann JC; Tilley SD; Graetzel M; Morasch J; Deuermeier J; Jaegermann W; Klein A
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21824-31. PubMed ID: 27452037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring the band gap of ZnO/MgZnO coaxial nanowires by the size and the component of Mg.
    Zhang YG; He HY; Pan BC
    Phys Chem Chem Phys; 2013 Feb; 15(8):2932-6. PubMed ID: 23340457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short-period superlattice structure of Sn-doped In(2)O(3)(ZnO)(4) and In(2)O(3)(ZnO)(5) nanowires.
    Na CW; Bae SY; Park J
    J Phys Chem B; 2005 Jul; 109(26):12785-90. PubMed ID: 16852585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of band offsets in Y2O3/InGaZnO4 heterojunctions.
    Park JC; Kim KW; Gila BP; Lambers ES; Norton DP; Pearton SJ; Ren F; Kim JK; Cho H
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8445-8. PubMed ID: 25958543
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable surface band gap in Mg(x)Zn(1-x)O thin films.
    Xue M; Guo Q; Wu K; Guo J
    J Chem Phys; 2008 Dec; 129(23):234707. PubMed ID: 19102552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire.
    Perillat-Merceroz G; Thierry R; Jouneau PH; Ferret P; Feuillet G
    Nanotechnology; 2012 Mar; 23(12):125702. PubMed ID: 22397812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of Nitridation on the Band Alignment at MoS
    Huan YW; Liu WJ; Tang XB; Xue XY; Wang XL; Sun QQ; Ding SJ
    Nanoscale Res Lett; 2019 May; 14(1):181. PubMed ID: 31144185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valence band offset of wurtzite InN/SrTiO3 heterojunction measured by x-ray photoelectron spectroscopy.
    Li Z; Zhang B; Wang J; Liu J; Liu X; Yang S; Zhu Q; Wang Z
    Nanoscale Res Lett; 2011 Mar; 6(1):193. PubMed ID: 21711731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical Interface States Controlling Rectification of Ultrathin NiO-ZnO p-n Heterojunctions.
    Steirer KX; Ou KL; Armstrong NR; Ratcliff EL
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31111-31118. PubMed ID: 28832121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Photoelectron time-resolved spectrum and phosphor spectrum of luminescent material ZnO by microwave absorption method].
    Dong GY; Dou JH; Ge SY; Lin L; Zheng YB; Wei ZR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1753-5. PubMed ID: 16499035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic/Organic' heterojunctions: organic light emitting diodes and organic photovoltaic devices.
    Armstrong NR; Wang W; Alloway DM; Placencia D; Ratcliff E; Brumbach M
    Macromol Rapid Commun; 2009 May; 30(9-10):717-31. PubMed ID: 21706658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured Ti(1-x)S(x)O(2-y)N(y) heterojunctions for efficient visible-light-induced photocatalysis.
    Etacheri V; Seery MK; Hinder SJ; Pillai SC
    Inorg Chem; 2012 Jul; 51(13):7164-73. PubMed ID: 22690945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of type-II band alignment in III-nitride semiconductors: experimental and theoretical investigation for In 0.17 Al 0.83 N/GaN heterostructures.
    Wang J; Xu F; Zhang X; An W; Li XZ; Song J; Ge W; Tian G; Lu J; Wang X; Tang N; Yang Z; Li W; Wang W; Jin P; Chen Y; Shen B
    Sci Rep; 2014 Oct; 4():6521. PubMed ID: 25283334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The quantum confined Stark effect in N-doped ZnO/ZnO/N-doped ZnO nanostructures for infrared and terahertz applications.
    Sikam P; Thirayatorn R; Moontragoon P; Kaewmaraya T; Amornkitbamrung V; Ikonic Z
    Nanotechnology; 2020 Oct; 31(44):445207. PubMed ID: 32698176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of mixed ceramic Mg(x)Zn(1-x)O nanofibers via Mg2+ doping using sol-gel electrospinning.
    Aykut Y; Parsons GN; Pourdeyhimi B; Khan SA
    Langmuir; 2013 Mar; 29(12):4159-66. PubMed ID: 23461585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.