These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23744396)

  • 1. Characterization of supramolecular gels.
    Yu G; Yan X; Han C; Huang F
    Chem Soc Rev; 2013 Aug; 42(16):6697-722. PubMed ID: 23744396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular gels formed from multi-component low molecular weight species.
    Buerkle LE; Rowan SJ
    Chem Soc Rev; 2012 Sep; 41(18):6089-102. PubMed ID: 22677951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical chemistry of supramolecular polymer networks.
    Seiffert S; Sprakel J
    Chem Soc Rev; 2012 Jan; 41(2):909-30. PubMed ID: 21909565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications.
    Falcone N; Kraatz HB
    Chemistry; 2018 Sep; 24(54):14316-14328. PubMed ID: 29667727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of supramolecular polymers.
    Liu Y; Wang Z; Zhang X
    Chem Soc Rev; 2012 Sep; 41(18):5922-32. PubMed ID: 22674180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning soft nanostructures in self-assembled supramolecular gels: from morphology control to morphology-dependent functions.
    Zhang L; Wang X; Wang T; Liu M
    Small; 2015 Mar; 11(9-10):1025-38. PubMed ID: 25384759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels.
    Weng W; Beck JB; Jamieson AM; Rowan SJ
    J Am Chem Soc; 2006 Sep; 128(35):11663-72. PubMed ID: 16939292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong and fast-recovery organic/inorganic hybrid AuNPs-supramolecular gels based on loofah-like 3D networks.
    He H; Chen S; Tong X; Chen Y; Wu B; Ma M; Wang X; Wang X
    Soft Matter; 2016 Jan; 12(3):957-64. PubMed ID: 26568047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelation induced supramolecular chirality: chirality transfer, amplification and application.
    Duan P; Cao H; Zhang L; Liu M
    Soft Matter; 2014 Aug; 10(30):5428-48. PubMed ID: 24975350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials.
    Yu X; Chen L; Zhang M; Yi T
    Chem Soc Rev; 2014 Aug; 43(15):5346-71. PubMed ID: 24770929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities.
    Samanta SK; Pal A; Bhattacharya S
    Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular synthons in designing low molecular mass gelling agents: L-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation.
    Sahoo P; Kumar DK; Raghavan SR; Dastidar P
    Chem Asian J; 2011 Apr; 6(4):1038-47. PubMed ID: 20967821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Self-Healing d-Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials.
    Chen S; Zhang B; Zhang N; Ge F; Zhang B; Wang X; Song J
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5871-5879. PubMed ID: 29350518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional supramolecular gels based on pillar[n]arene macrocycles.
    Li YF; Li Z; Lin Q; Yang YW
    Nanoscale; 2020 Jan; 12(4):2180-2200. PubMed ID: 31916548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular synthons in noncovalent synthesis of a class of gelators derived from simple organic salts: instant gelation of organic fluids at room temperature via in situ synthesis of the gelators.
    Das UK; Trivedi DR; Adarsh NN; Dastidar P
    J Org Chem; 2009 Sep; 74(18):7111-21. PubMed ID: 19678626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral bis(amino alcohol)oxalamide gelators-gelation properties and supramolecular organization: racemate versus pure enantiomer gelation.
    Makarević J; Jokić M; Raza Z; Stefanić Z; Kojić-Prodić B; Zinić M
    Chemistry; 2003 Nov; 9(22):5567-80. PubMed ID: 14639640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidrug-Containing, Salt-Based, Injectable Supramolecular Gels for Self-Delivery, Cell Imaging and Other Materials Applications.
    Roy R; Dastidar P
    Chemistry; 2016 Oct; 22(42):14929-14939. PubMed ID: 27578557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-stimulus-responsive supramolecular gels of two components and dual chiroptical switches.
    Miao W; Qin L; Yang D; Jin X; Liu M
    Chemistry; 2015 Jan; 21(3):1064-72. PubMed ID: 25393680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.
    Hirst AR; Escuder B; Miravet JF; Smith DK
    Angew Chem Int Ed Engl; 2008; 47(42):8002-18. PubMed ID: 18825737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.