BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 23744556)

  • 1. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.
    Dorey N; Lançon P; Thorndyke M; Dupont S
    Glob Chang Biol; 2013 Nov; 19(11):3355-67. PubMed ID: 23744556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.
    Stumpp M; Wren J; Melzner F; Thorndyke MC; Dupont ST
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):331-40. PubMed ID: 21742050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO
    Lee HG; Stumpp M; Yan JJ; Tseng YC; Heinzel S; Hu MY
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():87-97. PubMed ID: 31022521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.
    Stumpp M; Dupont S; Thorndyke MC; Melzner F
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):320-30. PubMed ID: 21742049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the sea urchin Heliocidaris crassispina from Hong Kong is robust to ocean acidification and copper contamination.
    Dorey N; Maboloc E; Chan KYK
    Aquat Toxicol; 2018 Dec; 205():1-10. PubMed ID: 30296660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis).
    Chen WY; Lin HC
    Environ Sci Pollut Res Int; 2018 May; 25(13):12947-12956. PubMed ID: 29478168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and latent effects of ocean acidification on the transition of a sea urchin from planktonic larva to benthic juvenile.
    Dorey N; Butera E; Espinel-Velasco N; Dupont S
    Sci Rep; 2022 Apr; 12(1):5557. PubMed ID: 35365731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE; Hofmann GE
    J Exp Biol; 2009 Aug; 212(Pt 16):2579-94. PubMed ID: 19648403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW; Padilla-Gamiño JL; Hofmann GE
    Glob Chang Biol; 2013 Aug; 19(8):2536-46. PubMed ID: 23661315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification.
    Gaitán-Espitia JD; Villanueva PA; Lopez J; Torres R; Navarro JM; Bacigalupe LD
    Biol Lett; 2017 Feb; 13(2):. PubMed ID: 28179409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification.
    Cossa D; Infantes E; Dupont S
    Sci Total Environ; 2024 Mar; 915():170169. PubMed ID: 38244616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens.
    Hu MY; Lein E; Bleich M; Melzner F; Stumpp M
    Acta Physiol (Oxf); 2018 Oct; 224(2):e13075. PubMed ID: 29660255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.
    Evans TG; Chan F; Menge BA; Hofmann GE
    Mol Ecol; 2013 Mar; 22(6):1609-25. PubMed ID: 23317456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acidification reduced growth rate but not swimming speed of larval sea urchins.
    Chan KY; García E; Dupont S
    Sci Rep; 2015 May; 5():9764. PubMed ID: 25978405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles.
    Byrne M; Lamare M; Winter D; Dworjanyn SA; Uthicke S
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20120439. PubMed ID: 23980242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification.
    Gianguzza P; Visconti G; Gianguzza F; Vizzini S; Sarà G; Dupont S
    Mar Environ Res; 2014 Feb; 93():70-7. PubMed ID: 23962538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of sea urchin larvae to field and laboratory acidification.
    Foo SA; Koweek DA; Munari M; Gambi MC; Byrne M; Caldeira K
    Sci Total Environ; 2020 Jun; 723():138003. PubMed ID: 32217382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding.
    Chan KY; Grünbaum D; O'Donnell MJ
    J Exp Biol; 2011 Nov; 214(Pt 22):3857-67. PubMed ID: 22031751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.