These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23744623)

  • 21. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe.
    Emberlin J; Detandt M; Gehrig R; Jaeger S; Nolard N; Rantio-Lehtimäki A
    Int J Biometeorol; 2002 Sep; 46(4):159-70. PubMed ID: 12242471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland.
    Valtonen A; Leinonen R; Pöyry J; Roininen H; Tuomela J; Ayres MP
    Glob Chang Biol; 2014 Jan; 20(1):16-27. PubMed ID: 24115266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2500 years of European climate variability and human susceptibility.
    Büntgen U; Tegel W; Nicolussi K; McCormick M; Frank D; Trouet V; Kaplan JO; Herzig F; Heussner KU; Wanner H; Luterbacher J; Esper J
    Science; 2011 Feb; 331(6017):578-82. PubMed ID: 21233349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Herbarium specimens show contrasting phenological responses to Himalayan climate.
    Hart R; Salick J; Ranjitkar S; Xu J
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10615-9. PubMed ID: 25002486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of management on foliage-dwelling arthropods and dynamics within permanent pastures.
    Rosa García R; Fraser MD
    Sci Rep; 2019 Jul; 9(1):11090. PubMed ID: 31366960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The phenology of Rubus fruticosus in Ireland: herbarium specimens provide evidence for the response of phenophases to temperature, with implications for climate warming.
    Diskin E; Proctor H; Jebb M; Sparks T; Donnelly A
    Int J Biometeorol; 2012 Nov; 56(6):1103-11. PubMed ID: 22382508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Climate change and the optimal flowering time of annual plants in seasonal environments.
    Johansson J; Bolmgren K; Jonzén N
    Glob Chang Biol; 2013 Jan; 19(1):197-207. PubMed ID: 23504731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climate data and flowering times for 450 species from 1844 deepen the record of phenological change in southern Germany.
    Renner SS; Wesche M; Zohner CM
    Am J Bot; 2021 Apr; 108(4):711-717. PubMed ID: 33901306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate change and the flowering time of annual crops.
    Craufurd PQ; Wheeler TR
    J Exp Bot; 2009; 60(9):2529-39. PubMed ID: 19505929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forecasting phenology: from species variability to community patterns.
    Diez JM; Ibáñez I; Miller-Rushing AJ; Mazer SJ; Crimmins TM; Crimmins MA; Bertelsen CD; Inouye DW
    Ecol Lett; 2012 Jun; 15(6):545-53. PubMed ID: 22433120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracking of climatic niche boundaries under recent climate change.
    La Sorte FA; Jetz W
    J Anim Ecol; 2012 Jul; 81(4):914-25. PubMed ID: 22372840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Larval and phenological traits predict insect community response to mowing regime manipulations.
    van Klink R; Menz MHM; Baur H; Dosch O; Kühne I; Lischer L; Luka H; Meyer S; Szikora T; Unternährer D; Arlettaz R; Humbert JY
    Ecol Appl; 2019 Jun; 29(4):e01900. PubMed ID: 30980442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of climate change-driven trends in phytoplankton phenology.
    Henson SA; Cole HS; Hopkins J; Martin AP; Yool A
    Glob Chang Biol; 2018 Jan; 24(1):e101-e111. PubMed ID: 28871605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of urbanization and land-use change on climate.
    Kalnay E; Cai M
    Nature; 2003 May; 423(6939):528-31. PubMed ID: 12774119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.
    Panchen ZA; Primack RB; Anisko T; Lyons RE
    Am J Bot; 2012 Apr; 99(4):751-6. PubMed ID: 22447982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting species-specific responses of fungi to climatic variation using historical records.
    Diez JM; James TY; McMunn M; Ibáñez I
    Glob Chang Biol; 2013 Oct; 19(10):3145-54. PubMed ID: 23744587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. When could global warming reach 4°C?
    Betts RA; Collins M; Hemming DL; Jones CD; Lowe JA; Sanderson MG
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):67-84. PubMed ID: 21115513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in flowering phenology of woody plants from 1963 to 2014 in North China.
    Wang H; Zhong S; Tao Z; Dai J; Ge Q
    Int J Biometeorol; 2019 May; 63(5):579-590. PubMed ID: 28547481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem.
    Jiang G; Liu J; Xu L; Yu G; He H; Zhang Z
    Integr Zool; 2013 Jun; 8(2):162-74. PubMed ID: 23731812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate Change and Phenology: Empoasca fabae (Hemiptera: Cicadellidae) Migration and Severity of Impact.
    Baker MB; Venugopal PD; Lamp WO
    PLoS One; 2015; 10(5):e0124915. PubMed ID: 25970705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.