These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 23744673)
1. Simultaneous truth and performance level estimation through fusion of probabilistic segmentations. Akhondi-Asl A; Warfield SK IEEE Trans Med Imaging; 2013 Oct; 32(10):1840-52. PubMed ID: 23744673 [TBL] [Abstract][Full Text] [Related]
2. A logarithmic opinion pool based STAPLE algorithm for the fusion of segmentations with associated reliability weights. Akhondi-Asl A; Hoyte L; Lockhart ME; Warfield SK IEEE Trans Med Imaging; 2014 Oct; 33(10):1997-2009. PubMed ID: 24951681 [TBL] [Abstract][Full Text] [Related]
3. Estimation of inferential uncertainty in assessing expert segmentation performance from STAPLE. Commowick O; Warfield SK IEEE Trans Med Imaging; 2010 Mar; 29(3):771-80. PubMed ID: 20199913 [TBL] [Abstract][Full Text] [Related]
4. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
5. Optimal MAP Parameters Estimation in STAPLE Using Local Intensity Similarity Information. Gorthi S; Akhondi-Asl A; Warfield SK IEEE J Biomed Health Inform; 2015 Sep; 19(5):1589-97. PubMed ID: 25955854 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. Warfield SK; Zou KH; Wells WM IEEE Trans Med Imaging; 2004 Jul; 23(7):903-21. PubMed ID: 15250643 [TBL] [Abstract][Full Text] [Related]
7. Estimating a reference standard segmentation with spatially varying performance parameters: local MAP STAPLE. Commowick O; Akhondi-Asl A; Warfield SK IEEE Trans Med Imaging; 2012 Aug; 31(8):1593-606. PubMed ID: 22562727 [TBL] [Abstract][Full Text] [Related]
8. Learning likelihoods for labeling (L3): a general multi-classifier segmentation algorithm. Weisenfeld NI; Warfield SK Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):322-9. PubMed ID: 22003715 [TBL] [Abstract][Full Text] [Related]
9. Estimation of inferential uncertainty in assessing expert segmentation performance from STAPLE. Commowick O; Warfield SK Inf Process Med Imaging; 2009; 21():701-12. PubMed ID: 19694305 [TBL] [Abstract][Full Text] [Related]
10. Combination strategies in multi-atlas image segmentation: application to brain MR data. Artaechevarria X; Munoz-Barrutia A; Ortiz-de-Solorzano C IEEE Trans Med Imaging; 2009 Aug; 28(8):1266-77. PubMed ID: 19228554 [TBL] [Abstract][Full Text] [Related]
11. Robust generative asymmetric GMM for brain MR image segmentation. Ji Z; Xia Y; Zheng Y Comput Methods Programs Biomed; 2017 Nov; 151():123-138. PubMed ID: 28946994 [TBL] [Abstract][Full Text] [Related]
12. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. Rohlfing T; Russakoff DB; Maurer CR IEEE Trans Med Imaging; 2004 Aug; 23(8):983-94. PubMed ID: 15338732 [TBL] [Abstract][Full Text] [Related]
13. Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion. Ma D; Cardoso MJ; Modat M; Powell N; Wells J; Holmes H; Wiseman F; Tybulewicz V; Fisher E; Lythgoe MF; Ourselin S PLoS One; 2014; 9(1):e86576. PubMed ID: 24475148 [TBL] [Abstract][Full Text] [Related]
14. Unsupervised quality control of segmentations based on a smoothness and intensity probabilistic model. Audelan B; Delingette H Med Image Anal; 2021 Feb; 68():101895. PubMed ID: 33260114 [TBL] [Abstract][Full Text] [Related]
15. A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation. Wang H; Das SR; Suh JW; Altinay M; Pluta J; Craige C; Avants B; Yushkevich PA; Neuroimage; 2011 Apr; 55(3):968-85. PubMed ID: 21237273 [TBL] [Abstract][Full Text] [Related]
16. iSTAPLE: Improved Label Fusion for Segmentation by Combining STAPLE with Image Intensity. Liu X; Montillo A; Tan ET; Schenck JF Proc SPIE Int Soc Opt Eng; 2013 Feb; 8669():. PubMed ID: 31741552 [TBL] [Abstract][Full Text] [Related]
17. Fuzzy local Gaussian mixture model for brain MR image segmentation. Ji Z; Xia Y; Sun Q; Chen Q; Xia D; Feng DD IEEE Trans Inf Technol Biomed; 2012 May; 16(3):339-47. PubMed ID: 22287250 [TBL] [Abstract][Full Text] [Related]
18. Incorporating priors on expert performance parameters for segmentation validation and label fusion: a maximum a posteriori STAPLE. Commowick O; Warfield SK Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):25-32. PubMed ID: 20879379 [TBL] [Abstract][Full Text] [Related]
19. Multi-Atlas Segmentation with Joint Label Fusion. Wang H; Suh JW; Das SR; Pluta JB; Craige C; Yushkevich PA IEEE Trans Pattern Anal Mach Intell; 2013 Mar; 35(3):611-23. PubMed ID: 22732662 [TBL] [Abstract][Full Text] [Related]
20. Estimation of the prior distribution of ground truth in the STAPLE algorithm: an empirical Bayesian approach. Akhondi-Asl A; Warfield SK Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):593-600. PubMed ID: 23285600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]