BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 23744713)

  • 1. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents.
    Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N
    Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards.
    Calvo-Garrido C; Usall J; Viñas I; Elmer PA; Cases E; Teixidó N
    Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes.
    Calvo-Garrido C; Viñas I; Elmer P; Usall J; Teixidó N
    Lett Appl Microbiol; 2013 Oct; 57(4):356-61. PubMed ID: 23789778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of
    Fedele G; González-Domínguez E; Si Ammour M; Languasco L; Rossi V
    Plant Dis; 2020 Mar; 104(3):808-816. PubMed ID: 31944905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of
    Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V
    Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel film-forming formulations of the biocontrol agent Candida sake CPA-1: biocontrol efficacy and performance at field conditions in organic wine grapes.
    Carbó A; Torres R; Usall J; Marín A; Chiralt A; Teixidó N
    Pest Manag Sci; 2019 Apr; 75(4):959-968. PubMed ID: 30192050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological control of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum.
    Metz C; Oerke EC; Dehne HW
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):353-9. PubMed ID: 12701443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode of action of a fatty acid-based natural product to control Botrytis cinerea in grapes.
    Calvo-Garrido C; Elmer PA; Parry FJ; Viñas I; Usall J; Torres R; Agnew RH; Teixidó N
    J Appl Microbiol; 2014 Apr; 116(4):967-79. PubMed ID: 24387715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State.
    Wang X; Glawe DA; Kramer E; Weller D; Okubara PA
    Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of control strategies against Botrytis cinerea in vineyard and evaluation of the residual fungicide concentrations.
    Gabriolotto C; Monchiero M; Negre M; Spadaro D; Gullino ML
    J Environ Sci Health B; 2009 May; 44(4):389-96. PubMed ID: 19365756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.
    Parafati L; Vitale A; Restuccia C; Cirvilleri G
    Food Microbiol; 2015 May; 47():85-92. PubMed ID: 25583341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C
    Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea.
    Ait Barka E; Eullaffroy P; Clément C; Vernet G
    Plant Cell Rep; 2004 Mar; 22(8):608-14. PubMed ID: 14595516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of Botrytis cinerea to chitosan and acibenzolar-S-methyl.
    Muñoz Z; Moret A
    Pest Manag Sci; 2010 Sep; 66(9):974-9. PubMed ID: 20730989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Antagonism Toward
    Calvo-Garrido C; Roudet J; Aveline N; Davidou L; Dupin S; Fermaud M
    Front Plant Sci; 2019; 10():105. PubMed ID: 30804972
    [No Abstract]   [Full Text] [Related]  

  • 16. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards.
    González-Domínguez E; Fedele G; Caffi T; Delière L; Sauris P; Gramaje D; Ramos-Saez de Ojer JL; Díaz-Losada E; Díez-Navajas AM; Bengoa P; Rossi V
    Pest Manag Sci; 2019 Feb; 75(2):324-332. PubMed ID: 29885027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould).
    Walker AS; Micoud A; Rémuson F; Grosman J; Gredt M; Leroux P
    Pest Manag Sci; 2013 Jun; 69(6):667-78. PubMed ID: 23576292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards.
    Rotolo C; De Miccolis Angelini RM; Dongiovanni C; Pollastro S; Fumarola G; Di Carolo M; Perrelli D; Natale P; Faretra F
    Pest Manag Sci; 2018 Mar; 74(3):715-725. PubMed ID: 29044981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes.
    Saito S; Suzuki S; Takayanagi T
    Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea.
    Schnee S; Queiroz EF; Voinesco F; Marcourt L; Dubuis PH; Wolfender JL; Gindro K
    J Agric Food Chem; 2013 Jun; 61(23):5459-67. PubMed ID: 23730921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.