These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23744741)

  • 1. Enzymatic activity preservation and protection through entrapment within degradable hydrogels.
    Mariani AM; Natoli ME; Kofinas P
    Biotechnol Bioeng; 2013 Nov; 110(11):2994-3002. PubMed ID: 23744741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Phase transition in the matrix as a regulator of enzymatic activity of proteinases].
    Eremeev NL; Kazanskaia NF
    Bioorg Khim; 1998 May; 24(5):356-63. PubMed ID: 9661789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural effects in photopolymerized sodium AMPS hydrogels crosslinked with poly(ethylene glycol) diacrylate for use as burn dressings.
    Nalampang K; Panjakha R; Molloy R; Tighe BJ
    J Biomater Sci Polym Ed; 2013; 24(11):1291-304. PubMed ID: 23796031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and stability of urease entrapped in thermosensitive poly(N-isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate) hydrogel.
    Bayramoglu G; Arica MY
    Bioprocess Biosyst Eng; 2014 Feb; 37(2):235-43. PubMed ID: 23771178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium alginate entrapped preparations of Aspergillus oryzae beta galactosidase: its stability and applications in the hydrolysis of lactose.
    Haider T; Husain Q
    Int J Biol Macromol; 2007 Jun; 41(1):72-80. PubMed ID: 17298841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyacrylamide-based semi-interpenetrating networks for entrapment of laccase and their use in azo dye decolorization.
    Koklukaya SZ; Sezer S; Aksoy S; Hasirci N
    Biotechnol Appl Biochem; 2016 Sep; 63(5):699-707. PubMed ID: 26202850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid prototyping of three-dimensional nanocomposite hydrogel constructs: effect of silica nanofiller on swelling and solute release behaviors of the nanocomposite hydrogels.
    Mishra S; Scarano FJ; Calvert P
    J Biomed Mater Res A; 2015 Oct; 103(10):3237-49. PubMed ID: 25778996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization.
    Choi D; Lee W; Park J; Koh W
    Biomed Mater Eng; 2008; 18(6):345-56. PubMed ID: 19197111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and application of poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/kappa-Carrageenan hydrogels for immobilization of lipase.
    Tümtürk H; Karaca N; Demirel G; Sahin F
    Int J Biol Macromol; 2007 Feb; 40(3):281-5. PubMed ID: 16997369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel reversible pH-triggered release immobilized enzyme system.
    Gai L; Wu D
    Appl Biochem Biotechnol; 2009 Sep; 158(3):747-60. PubMed ID: 18830822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entrapment of beta-galactosidase in polyvinylalcohol hydrogel.
    Grosová Z; Rosenberg M; Rebros M; Sipocz M; Sedlácková B
    Biotechnol Lett; 2008 Apr; 30(4):763-7. PubMed ID: 18043870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture.
    Dawes CS; Konig H; Lin CC
    J Biotechnol; 2017 Apr; 248():25-34. PubMed ID: 28284922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and kinetic study of laccase from Ganoderma cupreum AG-1 in hydrogels.
    Gahlout M; Gupte S; Gupte A
    Appl Biochem Biotechnol; 2014 May; 173(1):215-27. PubMed ID: 24740356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acrylamide-sepiolite based composite hydrogels for immobilization of invertase.
    Oztop HN; Hepokur C; Saraydin D
    J Food Sci; 2009 Sep; 74(7):N45-9. PubMed ID: 19895491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biomacromolecules; 2003; 4(5):1224-31. PubMed ID: 12959587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of laccase on polyacrylamide and polyacrylamide - κ - carragennan-based semi-interpenetrating polymer networks.
    Gökgöz M; Altinok H
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Oct; 40(5):326-30. PubMed ID: 22594636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluconazole release from hydrogels including acrylamide-acrylic acid-itaconic acid, and their microbiological interactions.
    Pulat M; Eksi H; Abbasoglu U
    J Biomater Sci Polym Ed; 2008; 19(2):193-205. PubMed ID: 18237492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.