These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
508 related articles for article (PubMed ID: 23744822)
1. Effect of thermostable α-amylase injection on mechanical and physiochemical properties for saccharification of extruded corn starch. Myat L; Ryu GH J Sci Food Agric; 2014 Jan; 94(2):288-95. PubMed ID: 23744822 [TBL] [Abstract][Full Text] [Related]
2. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme. Li Z; Cai L; Gu Z; Shi YC J Agric Food Chem; 2014 Aug; 62(32):8114-9. PubMed ID: 25039418 [TBL] [Abstract][Full Text] [Related]
3. Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes. Jung YS; Lee BH; Yoo SH PLoS One; 2017; 12(7):e0181372. PubMed ID: 28727742 [TBL] [Abstract][Full Text] [Related]
4. Dual modification of starch via partial enzymatic hydrolysis in the granular state and subsequent hydroxypropylation. Karim AA; Sufha EH; Zaidul IS J Agric Food Chem; 2008 Nov; 56(22):10901-7. PubMed ID: 18975963 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Gupta K; Jana AK; Kumar S; Maiti M Bioprocess Biosyst Eng; 2013 Nov; 36(11):1715-24. PubMed ID: 23572179 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme. Uthumporn U; Shariffa YN; Karim AA Appl Biochem Biotechnol; 2012 Mar; 166(5):1167-82. PubMed ID: 22203397 [TBL] [Abstract][Full Text] [Related]
7. Optimization of solid-state enzymatic hydrolysis of chestnut using mixtures of alpha-amylase and glucoamylase. López C; Torrado A; Guerra NP; Pastrana L J Agric Food Chem; 2005 Feb; 53(4):989-95. PubMed ID: 15713010 [TBL] [Abstract][Full Text] [Related]
8. High-concentration ethanol production from cooked corn starch by using medium-temperature cooking process. Chi Z; Liu J; Xu P Chin J Biotechnol; 1995; 11(3):171-6. PubMed ID: 8679933 [TBL] [Abstract][Full Text] [Related]
9. Continuous enzymatic liquefaction of starch for saccharification. Carr ME; Black LT; Bagby MO Biotechnol Bioeng; 1982 Nov; 24(11):2441-9. PubMed ID: 18546215 [TBL] [Abstract][Full Text] [Related]
10. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Dura A; Błaszczak W; Rosell CM Carbohydr Polym; 2014 Jan; 101():837-45. PubMed ID: 24299846 [TBL] [Abstract][Full Text] [Related]
11. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis. Qin F; Man J; Xu B; Hu M; Gu M; Liu Q; Wei C J Agric Food Chem; 2011 Dec; 59(23):12667-73. PubMed ID: 22059442 [TBL] [Abstract][Full Text] [Related]
12. Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Xiao Z; Wu M; Grosse S; Beauchemin M; Lévesque M; Lau PC Appl Biochem Biotechnol; 2014 Jan; 172(1):73-86. PubMed ID: 24046254 [TBL] [Abstract][Full Text] [Related]
13. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol. Wang R; Wang D; Gao X; Hong J Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139 [TBL] [Abstract][Full Text] [Related]
14. Investigation of γ-polyglutamic acid production via asynchronous saccharification and fermentation of raw corn starch. Gou Y; Niu C; Ge F; Li W; Cheng G; Jing S; Yang H; Li J; Ren Y World J Microbiol Biotechnol; 2024 Oct; 40(11):338. PubMed ID: 39358620 [TBL] [Abstract][Full Text] [Related]
15. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Mehta D; Satyanarayana T Appl Microbiol Biotechnol; 2014 May; 98(10):4503-19. PubMed ID: 24413972 [TBL] [Abstract][Full Text] [Related]
16. Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification. Kandil A; Li J; Vasanthan T; Bressler DC J Agric Food Chem; 2012 Aug; 60(34):8444-9. PubMed ID: 22793673 [TBL] [Abstract][Full Text] [Related]
17. Short communication: in vitro ruminal fermentability of a modified corn cultivar expressing a thermotolerant α-amylase. Hu W; Persia ME; Kung L J Dairy Sci; 2010 Oct; 93(10):4846-9. PubMed ID: 20855018 [TBL] [Abstract][Full Text] [Related]
18. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris. He Z; Zhang L; Mao Y; Gu J; Pan Q; Zhou S; Gao B; Wei D BMC Biotechnol; 2014 Dec; 14():114. PubMed ID: 25539598 [TBL] [Abstract][Full Text] [Related]
19. A thermoactive alpha-amylase from a Bacillus sp. isolated from CSMCRI salt farm. Pancha I; Jain D; Shrivastav A; Mishra SK; Shethia B; Mishra S; V P M; Jha B Int J Biol Macromol; 2010 Aug; 47(2):288-91. PubMed ID: 20417228 [TBL] [Abstract][Full Text] [Related]
20. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis. Baks T; Bruins ME; Matser AM; Janssen AE; Boom RM J Agric Food Chem; 2008 Jan; 56(2):488-95. PubMed ID: 18095648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]