BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23744829)

  • 1. A single PLP-dependent enzyme PctV catalyzes the transformation of 3-dehydroshikimate into 3-aminobenzoate in the biosynthesis of pactamycin.
    Hirayama A; Eguchi T; Kudo F
    Chembiochem; 2013 Jul; 14(10):1198-203. PubMed ID: 23744829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism-Based Trapping of the Quinonoid Intermediate by Using the K276R Mutant of PLP-Dependent 3-Aminobenzoate Synthase PctV in the Biosynthesis of Pactamycin.
    Hirayama A; Miyanaga A; Kudo F; Eguchi T
    Chembiochem; 2015 Nov; 16(17):2484-90. PubMed ID: 26426567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Characterization of 3-Aminobenzoic Acid Adenylation Enzyme PctU and UDP-N-Acetyl-d-Glucosamine: 3-Aminobenzoyl-ACP Glycosyltransferase PctL in Pactamycin Biosynthesis.
    Kudo F; Zhang J; Sato S; Hirayama A; Eguchi T
    Chembiochem; 2019 Oct; 20(19):2458-2462. PubMed ID: 31059166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD
    Hirayama A; Chu J; Goto E; Kudo F; Eguchi T
    Chembiochem; 2018 Jan; 19(2):126-130. PubMed ID: 29148266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrogating the Tailoring Steps of Pactamycin Biosynthesis and Accessing New Pactamycin Analogues.
    Abugrain ME; Lu W; Li Y; Serrill JD; Brumsted CJ; Osborn AR; Alani A; Ishmael JE; Kelly JX; Mahmud T
    Chembiochem; 2016 Sep; 17(17):1585-8. PubMed ID: 27305101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed biosynthesis of 5"-fluoropactamycin in Streptomyces pactum.
    Adams ES; Rinehart KL
    J Antibiot (Tokyo); 1994 Dec; 47(12):1456-65. PubMed ID: 7844040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Highly Promiscuous ß-Ketoacyl-ACP Synthase (KAS) III-like Protein Is Involved in Pactamycin Biosynthesis.
    Abugrain ME; Brumsted CJ; Osborn AR; Philmus B; Mahmud T
    ACS Chem Biol; 2017 Feb; 12(2):362-366. PubMed ID: 28060484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning of the pactamycin biosynthetic gene cluster and characterization of a crucial glycosyltransferase prior to a unique cyclopentane ring formation.
    Kudo F; Kasama Y; Hirayama T; Eguchi T
    J Antibiot (Tokyo); 2007 Aug; 60(8):492-503. PubMed ID: 17827660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products.
    Du YL; Ryan KS
    Nat Prod Rep; 2019 Mar; 36(3):430-457. PubMed ID: 30183796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The secondary metabolite pactamycin with potential for pharmaceutical applications: biosynthesis and regulation.
    Eida AA; Mahmud T
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4337-4345. PubMed ID: 31025074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum.
    Lu W; Alanzi AR; Abugrain ME; Ito T; Mahmud T
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10589-10601. PubMed ID: 30276712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis.
    Eida AA; Abugrain ME; Brumsted CJ; Mahmud T
    Nat Chem Biol; 2019 Aug; 15(8):795-802. PubMed ID: 31308531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthetic studies and genetic engineering of pactamycin analogs with improved selectivity toward malarial parasites.
    Lu W; Roongsawang N; Mahmud T
    Chem Biol; 2011 Apr; 18(4):425-31. PubMed ID: 21513878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 8''-Hydroxypactamycin and 7-deoxypactamycin, new members of the pactamycin group.
    Dobashi K; Isshiki K; Sawa T; Obata T; Hamada M; Naganawa H; Takita T; Takeuchi T; Umezawa H; Bei HS
    J Antibiot (Tokyo); 1986 Dec; 39(12):1779-83. PubMed ID: 3818452
    [No Abstract]   [Full Text] [Related]  

  • 15. Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues.
    Ito T; Roongsawang N; Shirasaka N; Lu W; Flatt PM; Kasanah N; Miranda C; Mahmud T
    Chembiochem; 2009 Sep; 10(13):2253-65. PubMed ID: 19670201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Metabolomics Reveals a Bifunctional Antibacterial Conjugate from Combined-Culture of
    Asamizu S; Pramana AAC; Kawai SJ; Arakawa Y; Onaka H
    ACS Chem Biol; 2022 Sep; 17(9):2664-2672. PubMed ID: 36074093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel gene, encoding 3-aminobenzoate 6-monooxygenase, involved in 3-aminobenzoate degradation in Comamonas sp. strain QT12.
    Yu H; Zhao S; Lu W; Wang W; Guo L
    Appl Microbiol Biotechnol; 2018 Jun; 102(11):4843-4852. PubMed ID: 29696333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic preparation of metabolic intermediates, 3-dehydroquinate and 3-dehydroshikimate, in the shikimate pathway.
    Adachi O; Ano Y; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2006 Dec; 70(12):3081-3. PubMed ID: 17151445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins.
    Huang S; Tabudravu J; Elsayed SS; Travert J; Peace D; Tong MH; Kyeremeh K; Kelly SM; Trembleau L; Ebel R; Jaspars M; Yu Y; Deng H
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12697-701. PubMed ID: 26206556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermostable shikimate 5-dehydrogenase from the archaeon Archaeoglobus fulgidus.
    Lim S; Schröder I; Monbouquette HG
    FEMS Microbiol Lett; 2004 Sep; 238(1):101-6. PubMed ID: 15336409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.