These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23744944)

  • 1. From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks.
    Passelègue FX; Schubnel A; Nielsen S; Bhat HS; Madariaga R
    Science; 2013 Jun; 340(6137):1208-11. PubMed ID: 23744944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of pore fluids in supershear earthquake ruptures.
    Pampillón P; Santillán D; Mosquera JC; Cueto-Felgueroso L
    Sci Rep; 2023 Jan; 13(1):398. PubMed ID: 36624113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The equation of motion for supershear frictional rupture fronts.
    Kammer DS; Svetlizky I; Cohen G; Fineberg J
    Sci Adv; 2018 Jul; 4(7):eaat5622. PubMed ID: 30035229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes.
    Lu X; Lapusta N; Rosakis AJ
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18931-6. PubMed ID: 18025479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aftershock signature of supershear earthquakes.
    Bouchon M; Karabulut H
    Science; 2008 Jun; 320(5881):1323-5. PubMed ID: 18535239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signature of transition to supershear rupture speed in the coseismic off-fault damage zone.
    Jara J; Bruhat L; Thomas MY; Antoine SL; Okubo K; Rougier E; Rosakis AJ; Sammis CG; Klinger Y; Jolivet R; Bhat HS
    Proc Math Phys Eng Sci; 2021 Nov; 477(2255):20210364. PubMed ID: 35153594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake.
    Bouchon M; Vallée M
    Science; 2003 Aug; 301(5634):824-6. PubMed ID: 12907799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition.
    Xia K; Rosakis AJ; Kanamori H
    Science; 2004 Mar; 303(5665):1859-61. PubMed ID: 15031503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates.
    Goldsby DL; Tullis TE
    Science; 2011 Oct; 334(6053):216-8. PubMed ID: 21998385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Earthquake dynamics. Supershear rupture in a M(w) 6.7 aftershock of the 2013 Sea of Okhotsk earthquake.
    Zhan Z; Helmberger DV; Kanamori H; Shearer PM
    Science; 2014 Jul; 345(6193):204-7. PubMed ID: 25013073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cohesive zone length of metagabbro at supershear rupture velocity.
    Fukuyama E; Xu S; Yamashita F; Mizoguchi K
    J Seismol; 2016; 20(4):1207-1215. PubMed ID: 28190969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the endpoints of earthquake ruptures.
    Wesnousky SG
    Nature; 2006 Nov; 444(7117):358-60. PubMed ID: 17108963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory earthquakes along inhomogeneous faults: directionality and supershear.
    Xia K; Rosakis AJ; Kanamori H; Rice JR
    Science; 2005 Apr; 308(5722):681-4. PubMed ID: 15860624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaraş, Türkiye, earthquake doublet.
    Ren C; Wang Z; Taymaz T; Hu N; Luo H; Zhao Z; Yue H; Song X; Shen Z; Xu H; Geng J; Zhang W; Wang T; Ge Z; Irmak TS; Erman C; Zhou Y; Li Z; Xu H; Cao B; Ding H
    Science; 2024 Jan; 383(6680):305-311. PubMed ID: 38236973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A supershear transition mechanism for cracks.
    Dunham EM; Favreau P; Carlson JM
    Science; 2003 Mar; 299(5612):1557-9. PubMed ID: 12624262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip.
    Kaproth BM; Marone C
    Science; 2013 Sep; 341(6151):1229-32. PubMed ID: 23950495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory earthquakes decipher control and stability of rupture speeds.
    Dong P; Xia K; Xu Y; Elsworth D; Ampuero JP
    Nat Commun; 2023 Apr; 14(1):2427. PubMed ID: 37105963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction.
    Shlomai H; Fineberg J
    Nat Commun; 2016 Jun; 7():11787. PubMed ID: 27278687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-flux control of the steady-state, creep, and dynamic slip modes of faults.
    Reches Z; Zu X; Carpenter BM
    Sci Rep; 2019 Jul; 9(1):10627. PubMed ID: 31337789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanches.
    Trottet B; Simenhois R; Bobillier G; Bergfeld B; van Herwijnen A; Jiang C; Gaume J
    Nat Phys; 2022; 18(9):1094-1098. PubMed ID: 36097630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.