BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23745004)

  • 1. A prospective study of spherical refractive error and ocular components among Northern Irish schoolchildren (the NICER study).
    Breslin KM; O'Donoghue L; Saunders KJ
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4843-50. PubMed ID: 23745004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethnic differences in refraction and ocular biometry in a population-based sample of 11-15-year-old Australian children.
    Ip JM; Huynh SC; Robaei D; Kifley A; Rose KA; Morgan IG; Wang JJ; Mitchell P
    Eye (Lond); 2008 May; 22(5):649-56. PubMed ID: 17277756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refractive error and ocular biometry in Jordanian adults.
    Mallen EA; Gammoh Y; Al-Bdour M; Sayegh FN
    Ophthalmic Physiol Opt; 2005 Jul; 25(4):302-9. PubMed ID: 15953114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six Year Refractive Change among White Children and Young Adults: Evidence for Significant Increase in Myopia among White UK Children.
    McCullough SJ; O'Donoghue L; Saunders KJ
    PLoS One; 2016; 11(1):e0146332. PubMed ID: 26783753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevalence and 5- to 6-year incidence and progression of myopia and hyperopia in Australian schoolchildren.
    French AN; Morgan IG; Burlutsky G; Mitchell P; Rose KA
    Ophthalmology; 2013 Jul; 120(7):1482-91. PubMed ID: 23522969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nepal Longitudinal Study: biometric characteristics of developing eyes.
    Garner LF; Stewart AW; Owens H; Kinnear RF; Frith MJ
    Optom Vis Sci; 2006 May; 83(5):274-80. PubMed ID: 16699439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial growth and changes in lenticular and corneal power during emmetropization in infants.
    Mutti DO; Mitchell GL; Jones LA; Friedman NE; Frane SL; Lin WK; Moeschberger ML; Zadnik K
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3074-80. PubMed ID: 16123404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R
    Eye Contact Lens; 2014 Mar; 40(2):84-90. PubMed ID: 24508773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ocular biometry, refraction and time spent outdoors during daylight in Irish schoolchildren.
    Harrington SC; O'Dwyer V
    Clin Exp Optom; 2020 Mar; 103(2):167-176. PubMed ID: 31187504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of 10-year change in refraction to nuclear cataract and axial length findings from an older population.
    Fotedar R; Mitchell P; Burlutsky G; Wang JJ
    Ophthalmology; 2008 Aug; 115(8):1273-8, 1278.e1. PubMed ID: 18222002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings.
    McBrien NA; Adams DW
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):321-33. PubMed ID: 9040464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profile of anisometropia and aniso-astigmatism in children: prevalence and association with age, ocular biometric measures, and refractive status.
    O'Donoghue L; McClelland JF; Logan NS; Rudnicka AR; Owen CG; Saunders KJ
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):602-8. PubMed ID: 23233258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher order ocular aberrations and their relation to refractive error and ocular biometry in children.
    Little JA; McCullough SJ; Breslin KM; Saunders KJ
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):4791-800. PubMed ID: 25028356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal topography and myopia. A cross-sectional study.
    Carney LG; Mainstone JC; Henderson BA
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):311-20. PubMed ID: 9040463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractive error and visual impairment in school-age children in Gombak District, Malaysia.
    Goh PP; Abqariyah Y; Pokharel GP; Ellwein LB
    Ophthalmology; 2005 Apr; 112(4):678-85. PubMed ID: 15808262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Association between Maternal Reproductive Age and Progression of Refractive Error in Urban Students in Beijing.
    Lin Z; Mao GY; Vasudevan B; Jin ZB; Ciuffreda KJ; Jhanji V; Zhou HJ; Wang NL; Liang YB
    PLoS One; 2015; 10(9):e0139383. PubMed ID: 26421841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between Refractive Errors and Ocular Biometry in an Elderly Population.
    Hashemi H; Bouyeh A; Khabazkhoob M
    Optom Vis Sci; 2023 Jan; 100(1):74-81. PubMed ID: 36705717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the ocular refractive components: the Reykjavik Eye Study.
    Olsen T; Arnarsson A; Sasaki H; Sasaki K; Jonasson F
    Acta Ophthalmol Scand; 2007 Jun; 85(4):361-6. PubMed ID: 17286626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive errors of medical students in Turkey: one year follow-up of refraction and biometry.
    Onal S; Toker E; Akingol Z; Arslan G; Ertan S; Turan C; Kaplan O
    Optom Vis Sci; 2007 Mar; 84(3):175-80. PubMed ID: 17435530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Baseline refractive and ocular component measures of children enrolled in the correction of myopia evaluation trial (COMET).
    Gwiazda J; Marsh-Tootle WL; Hyman L; Hussein M; Norton TT;
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):314-21. PubMed ID: 11818372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.