These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23745044)

  • 1. An investigation of the influence of cell topography on epithelial mechanical stresses during pulmonary airway reopening.
    Jacob AM; Gaver DP
    Phys Fluids (1994); 2005; 17(3):31502. PubMed ID: 23745044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening.
    Kay SS; Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.
    Bilek AM; Dee KC; Gaver DP
    J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4.
    Jacob AM; Gaver DP
    J Appl Physiol (1985); 2012 Nov; 113(9):1377-87. PubMed ID: 22898551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.
    Yalcin HC; Perry SF; Ghadiali SN
    J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.
    Dailey HL; Ricles LM; Yalcin HC; Ghadiali SN
    J Appl Physiol (1985); 2009 Jan; 106(1):221-32. PubMed ID: 19008489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pulsatile Propagation of a Finger of Air Within a Fluid-Occluded Cylindrical Tube.
    Smith BJ; Gaver DP
    J Fluid Mech; 2008 Apr; 601():1-23. PubMed ID: 19081756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of surfactant on the propagation of a semi-infinite bubble through a liquid-filled compliant channel.
    Halpern D; Gaver DP
    J Fluid Mech; 2012 May; 698():125-159. PubMed ID: 22997476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
    Naire S; Jensen OE
    J Appl Physiol (1985); 2005 Aug; 99(2):458-71. PubMed ID: 15802368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An estimation of mechanical stress on alveolar walls during repetitive alveolar reopening and closure.
    Chen ZL; Song YL; Hu ZY; Zhang S; Chen YZ
    J Appl Physiol (1985); 2015 Aug; 119(3):190-201. PubMed ID: 26023222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.
    Chen X; Zielinski R; Ghadiali SN
    J Biomech Eng; 2014 Oct; 136(10):101007. PubMed ID: 25068642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
    Hosseinkhah N; Hynynen K
    Phys Med Biol; 2012 Feb; 57(3):785-808. PubMed ID: 22252221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions.
    Ghadiali SN; Gaver DP
    J Appl Physiol (1985); 2000 Feb; 88(2):493-506. PubMed ID: 10658016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of viscoelasticity in the tube model of airway reopening. II. Non-Newtonian gels and airway simulation.
    Hsu SH; Strohl KP; Haxhiu MA; Jamieson AM
    J Appl Physiol (1985); 1996 May; 80(5):1649-59. PubMed ID: 8727551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of surfactant on propagation and rupture of a liquid plug in a tube.
    Muradoglu M; RomanĂ² F; Fujioka H; Grotberg JB
    J Fluid Mech; 2019 Aug; 872():407-437. PubMed ID: 31844335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary airway reopening: effects of non-Newtonian fluid viscosity.
    Low HT; Chew YT; Zhou CW
    J Biomech Eng; 1997 Aug; 119(3):298-308. PubMed ID: 9285343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An asymptotic model of unsteady airway reopening.
    Naire S; Jensen OE
    J Biomech Eng; 2003 Dec; 125(6):823-31. PubMed ID: 14986407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model.
    Tavana H; Zamankhan P; Christensen PJ; Grotberg JB; Takayama S
    Biomed Microdevices; 2011 Aug; 13(4):731-42. PubMed ID: 21487664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of viscoelasticity in tube model of airway reopening. I. Nonnewtonian sols.
    Hsu SH; Strohl KP; Jamieson AM
    J Appl Physiol (1985); 1994 Jun; 76(6):2481-9. PubMed ID: 7928874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex flow around a bubble rising in a non-Newtonian fluid.
    Frank X; Li HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036309. PubMed ID: 15903576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.