These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23745044)

  • 21. Application of a Flow-Induced Stress Wave and Investigation of Associated Injuries on Cell Monolayers Using a Parallel Plate Flow Chamber.
    Shurbaji S; Al-Ruweidi MKAA; Ali FH; Benslimane FM; Yalcin HC
    Methods Protoc; 2020 Sep; 3(4):. PubMed ID: 32987681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanics of liquid-epithelium interactions in pulmonary airways.
    Ghadiali SN; Gaver DP
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):232-43. PubMed ID: 18511356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S; Cowin SC; Zeng Y
    J Biomech; 1994 Mar; 27(3):339-60. PubMed ID: 8051194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [A perturbation solution of pulsatile Casson flow in the parallel-plate flow chamber].
    Qan K; Guo B; Liu B; Liu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):402-7. PubMed ID: 12557508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen Tubular Airway-on-Chip for Extended Epithelial Culture and Investigation of Ventilation Dynamics.
    Gao W; Kanagarajah KR; Graham E; Soon K; Veres T; Moraes TJ; Bear CE; Veldhuizen RA; Wong AP; Günther A
    Small; 2024 Jul; 20(27):e2309270. PubMed ID: 38431940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alveolar septal patterning during compensatory lung growth: Part II the effect of parenchymal pressure gradients.
    Haber S; Weisbord M; Mentzer SJ; Tsuda A
    J Theor Biol; 2017 May; 421():168-178. PubMed ID: 28363864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems.
    Huh D; Fujioka H; Tung YC; Futai N; Paine R; Grotberg JB; Takayama S
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18886-91. PubMed ID: 18006663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of power-law rheology on cell injury during microbubble flows.
    Dailey HL; Ghadiali SN
    Biomech Model Mechanobiol; 2010 Jun; 9(3):263-79. PubMed ID: 19865840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble.
    Pillert JE; Gaver DP
    Biophys J; 2009 Jan; 96(1):312-27. PubMed ID: 18849416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling airflow-related shear stress during heterogeneous constriction and mechanical ventilation.
    Nucci G; Suki B; Lutchen K
    J Appl Physiol (1985); 2003 Jul; 95(1):348-56. PubMed ID: 12651864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation.
    Calderon AJ; Eshpuniyani B; Fowlkes JB; Bull JL
    Phys Fluids (1994); 2010 Jun; 22(6):61902. PubMed ID: 20661320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction.
    Anderson EJ; Falls TD; Sorkin AM; Knothe Tate ML
    Biomed Eng Online; 2006 May; 5():27. PubMed ID: 16672051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influences of parenchymal tethering on the reopening of closed pulmonary airways.
    Yap DY; Liebkemann WD; Solway J; Gaver DP
    J Appl Physiol (1985); 1994 May; 76(5):2095-105. PubMed ID: 8063673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wall shear stress distributions in a model of normal and constricted small airways.
    Evans DJ; Green AS; Thomas NK
    Proc Inst Mech Eng H; 2014 Apr; 228(4):362-70. PubMed ID: 24618983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of gravity and surface tension on steady microbubble propagation in asymmetric bifurcating airways.
    Munir B; Xu Y
    Phys Fluids (1994); 2020 Jul; 32(7):072105. PubMed ID: 35002196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New perspectives on the mechanical basis for airway hyperreactivity and airway hypersensitivity in asthma.
    Affonce DA; Lutchen KR
    J Appl Physiol (1985); 2006 Dec; 101(6):1710-9. PubMed ID: 16902064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of viscoelasticity in an airway closure model.
    Romanò F; Muradoglu M; Fujioka H; Grotberg JB
    J Fluid Mech; 2021 Apr; 913():. PubMed ID: 33776140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Air-liquid interfacial movement in models simulating airway reopening.
    Hsu SH; Hou CM
    Med Eng Phys; 1998 Nov; 20(8):558-64. PubMed ID: 9888233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.