These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23745044)

  • 41. Microbubbles and blood-brain barrier opening: a numerical study on acoustic emissions and wall stress predictions.
    Hosseinkhah N; Goertz DE; Hynynen K
    IEEE Trans Biomed Eng; 2015 May; 62(5):1293-304. PubMed ID: 25546853
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modelling of peak-flow wall shear stress in major airways of the lung.
    Green AS
    J Biomech; 2004 May; 37(5):661-7. PubMed ID: 15046995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A microfluidic device to apply shear stresses to polarizing ciliated airway epithelium using air flow.
    Trieu D; Waddell TK; McGuigan AP
    Biomicrofluidics; 2014 Nov; 8(6):064104. PubMed ID: 25553181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bubble motion through a generalized power-law fluid flowing in a vertical tube.
    Mukundakrishnan K; Eckmann DM; Ayyaswamy PS
    Ann N Y Acad Sci; 2009 Apr; 1161():256-67. PubMed ID: 19426324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EVALUATION OF INTERFACIAL FLUID DYNAMICAL STRESSES USING THE IMMERSED BOUNDARY METHOD.
    Williams HA; Fauci LJ; Gaver DP
    Discrete Continuous Dyn Syst Ser B; 2009 Mar; 11(2):519-540. PubMed ID: 23024610
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening.
    Perun ML; Gaver DP
    J Appl Physiol (1985); 1995 Nov; 79(5):1717-28. PubMed ID: 8594034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Influence of application-impulse stimulation treatment on airway's reactivity with asthma].
    You YZ
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 1992 Feb; 12(2):86-7, 69. PubMed ID: 1498533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acoustic microstreaming around a gas bubble.
    Doinikov AA; Bouakaz A
    J Acoust Soc Am; 2010 Feb; 127(2):703-9. PubMed ID: 20136192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement.
    Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational evaluation of intraventricular pressure gradients based on a fluid-structure approach.
    Redaelli A; Montevecchi FM
    J Biomech Eng; 1996 Nov; 118(4):529-37. PubMed ID: 8950657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite-Reynolds-number effects in steady, three-dimensional airway reopening.
    Hazel AL; Heil M
    J Biomech Eng; 2006 Aug; 128(4):573-8. PubMed ID: 16813448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.
    Khanafer KM; Bull JL; Upchurch GR; Berguer R
    Ann Vasc Surg; 2007 Jan; 21(1):67-74. PubMed ID: 17349339
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Patterns of recruitment and injury in a heterogeneous airway network model.
    Stewart PS; Jensen OE
    J R Soc Interface; 2015 Oct; 12(111):20150523. PubMed ID: 26423440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lagrangian transport properties of pulmonary interfacial flows.
    Smith BJ; Lukens S; Yamaguchi E; Gaver DP
    J Fluid Mech; 2011 Nov; 705():234-257. PubMed ID: 23049141
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interfacial flow of a surfactant-laden interface under asymmetric shear flow.
    Eftekhari M; Schwarzenberger K; Heitkam S; Eckert K
    J Colloid Interface Sci; 2021 Oct; 599():837-848. PubMed ID: 33991800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational simulations predict a key role for oscillatory fluid shear stress in de novo valvular tissue formation.
    Salinas M; Ramaswamy S
    J Biomech; 2014 Nov; 47(14):3517-23. PubMed ID: 25262874
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Boundary Element Model of Microbubble Sticking and Sliding in the Microcirculation.
    Eshpuniyani B; Fowlkes JB; Bull JL
    Int J Heat Mass Transf; 2008 Nov; 51(23-24):5700-5711. PubMed ID: 19885367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.