These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23745143)

  • 1. Local adaptation and evolutionary potential along a temperature gradient in the fungal pathogen Rhynchosporium commune.
    Stefansson TS; McDonald BA; Willi Y
    Evol Appl; 2013 Apr; 6(3):524-34. PubMed ID: 23745143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.
    Stefansson TS; McDonald BA; Willi Y
    PLoS One; 2014; 9(11):e112523. PubMed ID: 25383967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola.
    Zhan J; McDonald BA
    Mol Ecol; 2011 Apr; 20(8):1689-701. PubMed ID: 21395890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trade-offs and evolution of thermal adaptation in the Irish potato famine pathogen Phytophthora infestans.
    Yang LN; Zhu W; Wu EJ; Yang C; Thrall PH; Burdon JJ; Jin LP; Shang LP; Zhan J
    Mol Ecol; 2016 Aug; 25(16):4047-58. PubMed ID: 27288627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural selection drives population divergence for local adaptation in a wheat pathogen.
    Pereira D; Croll D; Brunner PC; McDonald BA
    Fungal Genet Biol; 2020 Aug; 141():103398. PubMed ID: 32371235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen.
    Robin C; Andanson A; Saint-Jean G; Fabreguettes O; Dutech C
    Mol Ecol; 2017 Apr; 26(7):1952-1963. PubMed ID: 28141894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid adaptation of the Irish potato famine pathogen
    Wu EJ; Wang YP; Yahuza L; He MH; Sun DL; Huang YM; Liu YC; Yang LN; Zhu W; Zhan J
    Evol Appl; 2020 Apr; 13(4):768-780. PubMed ID: 32211066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate.
    Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R
    Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).
    Schade FM; Shama LN; Wegner KM
    BMC Evol Biol; 2014 Jul; 14():164. PubMed ID: 25927537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographic variation in the response of Culex pipiens life history traits to temperature.
    Ruybal JE; Kramer LD; Kilpatrick AM
    Parasit Vectors; 2016 Feb; 9():116. PubMed ID: 26928181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local adaptation to temperature in populations and clonal lineages of the Irish potato famine pathogen Phytophthora infestans.
    Mariette N; Androdias A; Mabon R; Corbière R; Marquer B; Montarry J; Andrivon D
    Ecol Evol; 2016 Sep; 6(17):6320-31. PubMed ID: 27648246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and physiological responses in largemouth bass populations to environmental warming: Effects of inhabiting chronically heated environments.
    White DP; Wahl DH
    J Therm Biol; 2020 Feb; 88():102467. PubMed ID: 32125971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation.
    Kavanagh KD; Haugen TO; Gregersen F; Jernvall J; Vøllestad LA
    BMC Evol Biol; 2010 Nov; 10():350. PubMed ID: 21070638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs.
    Verheyen J; Stoks R
    J Anim Ecol; 2019 Apr; 88(4):624-636. PubMed ID: 30637722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local thermal adaptation and limited gene flow constrain future climate responses of a marine ecosystem engineer.
    Miller AD; Coleman MA; Clark J; Cook R; Naga Z; Doblin MA; Hoffmann AA; Sherman CDH; Bellgrove A
    Evol Appl; 2020 May; 13(5):918-934. PubMed ID: 32431743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat stress responses and population genetics of the kelp
    Liesner D; Fouqueau L; Valero M; Roleda MY; Pearson GA; Bischof K; Valentin K; Bartsch I
    Ecol Evol; 2020 Sep; 10(17):9144-9177. PubMed ID: 32953052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro and In Planta Studies on Temperature Adaptation of
    Navarro BL; Campos RA; Gasparoto MCG; von Tiedemann A
    Pathogens; 2021 Feb; 10(2):. PubMed ID: 33540950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments.
    Chen Z; Farrell AP; Matala A; Narum SR
    Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla.
    Aspinwall MJ; Vårhammar A; Blackman CJ; Tjoelker MG; Ahrens C; Byrne M; Tissue DT; Rymer PD
    Tree Physiol; 2017 Aug; 37(8):1095-1112. PubMed ID: 28460131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops.
    Linde CC; Smith LM; Peakall R
    BMC Evol Biol; 2016 May; 16():101. PubMed ID: 27176034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.