These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Maldonado AM; Doerner P; Dixon RA; Lamb CJ; Cameron RK Nature; 2002 Sep; 419(6905):399-403. PubMed ID: 12353036 [TBL] [Abstract][Full Text] [Related]
5. Priming in systemic plant immunity. Jung HW; Tschaplinski TJ; Wang L; Glazebrook J; Greenberg JT Science; 2009 Apr; 324(5923):89-91. PubMed ID: 19342588 [TBL] [Abstract][Full Text] [Related]
6. Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Chaturvedi R; Krothapalli K; Makandar R; Nandi A; Sparks AA; Roth MR; Welti R; Shah J Plant J; 2008 Apr; 54(1):106-17. PubMed ID: 18088304 [TBL] [Abstract][Full Text] [Related]
7. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Nandi A; Welti R; Shah J Plant Cell; 2004 Feb; 16(2):465-77. PubMed ID: 14729910 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. Singh V; Roy S; Singh D; Nandi AK J Biosci; 2014 Mar; 39(1):119-26. PubMed ID: 24499796 [TBL] [Abstract][Full Text] [Related]
9. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Mishina TE; Zeier J Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843 [TBL] [Abstract][Full Text] [Related]
10. Exogenous application of histone demethylase inhibitor trans-2-phenylcyclopropylamine mimics FLD loss-of-function phenotype in terms of systemic acquired resistance in Arabidopsis thaliana. Singh V; Banday ZZ; Nandi AK Plant Signal Behav; 2014; 9(9):e29658. PubMed ID: 25763701 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. Wittek F; Hoffmann T; Kanawati B; Bichlmeier M; Knappe C; Wenig M; Schmitt-Kopplin P; Parker JE; Schwab W; Vlot AC J Exp Bot; 2014 Nov; 65(20):5919-31. PubMed ID: 25114016 [TBL] [Abstract][Full Text] [Related]
12. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. Zbierzak AM; Porfirova S; Griebel T; Melzer M; Parker JE; Dörmann P Plant J; 2013 Aug; 75(4):539-52. PubMed ID: 23617639 [TBL] [Abstract][Full Text] [Related]
13. Regulation of flowering time by histone acetylation in Arabidopsis. He Y; Michaels SD; Amasino RM Science; 2003 Dec; 302(5651):1751-4. PubMed ID: 14593187 [TBL] [Abstract][Full Text] [Related]
14. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Jin JB; Jin YH; Lee J; Miura K; Yoo CY; Kim WY; Van Oosten M; Hyun Y; Somers DE; Lee I; Yun DJ; Bressan RA; Hasegawa PM Plant J; 2008 Feb; 53(3):530-40. PubMed ID: 18069938 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Jagadeeswaran G; Raina S; Acharya BR; Maqbool SB; Mosher SL; Appel HM; Schultz JC; Klessig DF; Raina R Plant J; 2007 Jul; 51(2):234-46. PubMed ID: 17521413 [TBL] [Abstract][Full Text] [Related]
16. An abietane diterpenoid is a potent activator of systemic acquired resistance. Chaturvedi R; Venables B; Petros RA; Nalam V; Li M; Wang X; Takemoto LJ; Shah J Plant J; 2012 Jul; 71(1):161-72. PubMed ID: 22385469 [TBL] [Abstract][Full Text] [Related]
17. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Mishina TE; Zeier J Plant Physiol; 2006 Aug; 141(4):1666-75. PubMed ID: 16778014 [TBL] [Abstract][Full Text] [Related]
18. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Laurie-Berry N; Joardar V; Street IH; Kunkel BN Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E; Rostás M; Zeier J Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]