BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 23745678)

  • 1. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria.
    Choi MS; Kim W; Lee C; Oh CS
    Mol Plant Microbe Interact; 2013 Oct; 26(10):1115-22. PubMed ID: 23745678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria.
    Oh J; Kim JG; Jeon E; Yoo CH; Moon JS; Rhee S; Hwang I
    J Biol Chem; 2007 May; 282(18):13601-9. PubMed ID: 17314101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis, acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth.
    Liu Y; Zhou X; Liu W; Huang J; Liu Q; Sun J; Cai X; Miao W
    BMC Microbiol; 2020 Jan; 20(1):4. PubMed ID: 31906854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria.
    Grant SR; Fisher EJ; Chang JH; Mole BM; Dangl JL
    Annu Rev Microbiol; 2006; 60():425-49. PubMed ID: 16753033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological activity of harpin produced by Pantoea stewartii subsp. stewartii.
    Ahmad M; Majerczak DR; Pike S; Hoyos ME; Novacky A; Coplin DL
    Mol Plant Microbe Interact; 2001 Oct; 14(10):1223-34. PubMed ID: 11605962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hrp gene-dependent induction of hin1: a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal.
    Gopalan S; Wei W; He SY
    Plant J; 1996 Oct; 10(4):591-600. PubMed ID: 8893538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation and secretion of Xanthomonas virulence factors.
    Büttner D; Bonas U
    FEMS Microbiol Rev; 2010 Mar; 34(2):107-33. PubMed ID: 19925633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly-conserved single-stranded DNA-binding protein in Xanthomonas functions as a harpin-like protein to trigger plant immunity.
    Li YR; Ma WX; Che YZ; Zou LF; Zakria M; Zou HS; Chen GY
    PLoS One; 2013; 8(2):e56240. PubMed ID: 23418541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death.
    Alfano JR; Collmer A
    J Bacteriol; 1997 Sep; 179(18):5655-62. PubMed ID: 9294418
    [No Abstract]   [Full Text] [Related]  

  • 10. Bacterial home goal by harpins.
    Bonas U
    Trends Microbiol; 1994 Jan; 2(1):1-2. PubMed ID: 8162428
    [No Abstract]   [Full Text] [Related]  

  • 11. Mutations in the N-terminal coding region of the harpin protein Hpa1 from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco.
    Wang XY; Song CF; Miao WG; Ji ZL; Wang X; Zhang Y; Zhang JH; Hu JS; Borth W; Wang JS
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):359-69. PubMed ID: 18791711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the type III secretion system in phytopathogenic bacteria.
    Tang X; Xiao Y; Zhou JM
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1159-66. PubMed ID: 17073299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Xanthomonas type III effectors manipulate the host plant.
    Kay S; Bonas U
    Curr Opin Microbiol; 2009 Feb; 12(1):37-43. PubMed ID: 19168386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of specific fragments of HpaG Xooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants.
    Chen L; Qian J; Qu S; Long J; Yin Q; Zhang C; Wu X; Sun F; Wu T; Hayes M; Beer SV; Dong H
    Phytopathology; 2008 Jul; 98(7):781-91. PubMed ID: 18943254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal half of the HrpN virulence protein of the fire blight pathogen Erwinia amylovora is essential for its secretion and for its virulence and avirulence activities.
    Sinn JP; Oh CS; Jensen PJ; Carpenter SC; Beer SV; McNellis TW
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1387-97. PubMed ID: 18842089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Who comes first? How plant pathogenic bacteria orchestrate type III secretion.
    Büttner D; Bonas U
    Curr Opin Microbiol; 2006 Apr; 9(2):193-200. PubMed ID: 16529983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The HrpN effector of Erwinia amylovora, which is involved in type III translocation, contributes directly or indirectly to callose elicitation on apple leaves.
    Boureau T; Siamer S; Perino C; Gaubert S; Patrit O; Degrave A; Fagard M; Chevreau E; Barny MA
    Mol Plant Microbe Interact; 2011 May; 24(5):577-84. PubMed ID: 21463207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic action of harpin proteins: HrpWea from Erwinia amylovora suppresses HrpNea-induced cell death in Arabidopsis thaliana.
    Reboutier D; Frankart C; Briand J; Biligui B; Rona JP; Haapalainen M; Barny MA; Bouteau F
    J Cell Sci; 2007 Sep; 120(Pt 18):3271-8. PubMed ID: 17726062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells.
    Crabill E; Karpisek A; Alfano JR
    Mol Microbiol; 2012 Jul; 85(2):225-38. PubMed ID: 22607547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors.
    Kvitko BH; Ramos AR; Morello JE; Oh HS; Collmer A
    J Bacteriol; 2007 Nov; 189(22):8059-72. PubMed ID: 17873033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.