BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23745742)

  • 1. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems.
    Guo K; Freguia S; Dennis PG; Chen X; Donose BC; Keller J; Gooding JJ; Rabaey K
    Environ Sci Technol; 2013 Jul; 47(13):7563-70. PubMed ID: 23745742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth.
    Strycharz-Glaven SM; Tender LM
    ChemSusChem; 2012 Jun; 5(6):1106-18. PubMed ID: 22581467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and current production of mixed culture anodic biofilms remain unaffected by sub-microscale surface roughness.
    Pierra M; Golozar M; Zhang X; Prévoteau A; De Volder M; Reynaerts D; Rabaey K
    Bioelectrochemistry; 2018 Aug; 122():213-220. PubMed ID: 29694942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms.
    Commault AS; Barrière F; Lapinsonnière L; Lear G; Bouvier S; Weld RJ
    Bioresour Technol; 2015 Nov; 195():265-72. PubMed ID: 26166461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes.
    Pons L; Délia ML; Bergel A
    Bioresour Technol; 2011 Feb; 102(3):2678-83. PubMed ID: 21131196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
    Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge transport through Geobacter sulfurreducens biofilms grown on graphite rods.
    Katuri KP; Rengaraj S; Kavanagh P; O'Flaherty V; Leech D
    Langmuir; 2012 May; 28(20):7904-13. PubMed ID: 22524560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On electron transport through Geobacter biofilms.
    Bond DR; Strycharz-Glaven SM; Tender LM; Torres CI
    ChemSusChem; 2012 Jun; 5(6):1099-105. PubMed ID: 22615023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms.
    Franks AE; Nevin KP; Glaven RH; Lovley DR
    ISME J; 2010 Apr; 4(4):509-19. PubMed ID: 20033069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of anode surface chemistry on microbial fuel cell operation.
    Santoro C; Babanova S; Artyushkova K; Cornejo JA; Ista L; Bretschger O; Marsili E; Atanassov P; Schuler AJ
    Bioelectrochemistry; 2015 Dec; 106(Pt A):141-9. PubMed ID: 26025340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems.
    Guo K; Soeriyadi AH; Feng H; Prévoteau A; Patil SA; Gooding JJ; Rabaey K
    Bioresour Technol; 2015 Nov; 195():46-50. PubMed ID: 26112346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional carbon-based anodes promoted the accumulation of exoelectrogens in bioelectrochemical systems.
    Wu Y; He G; Chen S; Wang Z
    Water Environ Res; 2020 Jul; 92(7):997-1005. PubMed ID: 31891435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens.
    Katuri KP; Kamireddy S; Kavanagh P; Muhammad A; Conghaile PÓ; Kumar A; Saikaly PE; Leech D
    Water Res; 2020 Oct; 185():116284. PubMed ID: 32818731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system.
    Li C; Cheng S
    Crit Rev Biotechnol; 2019 Dec; 39(8):1015-1030. PubMed ID: 31496297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems.
    Guo K; Donose BC; Soeriyadi AH; Prévoteau A; Patil SA; Freguia S; Gooding JJ; Rabaey K
    Environ Sci Technol; 2014 Jun; 48(12):7151-6. PubMed ID: 24911921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure.
    Zhang X; Prévoteau A; Louro RO; Paquete CM; Rabaey K
    Biosens Bioelectron; 2018 Dec; 121():183-191. PubMed ID: 30218926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell.
    Ishii S; Logan BE; Sekiguchi Y
    Appl Microbiol Biotechnol; 2012 May; 94(4):1087-94. PubMed ID: 22223104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.