These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23745886)

  • 1. Measurement of a structured backflow in an open small channel induced by surface-tension gradients.
    Pulido-Companys A; Claret J; Ignés-Mullol J; Sagués F
    Phys Rev Lett; 2013 May; 110(21):214506. PubMed ID: 23745886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous ζ potential in foam films.
    Joly L; Detcheverry F; Biance AL
    Phys Rev Lett; 2014 Aug; 113(8):088301. PubMed ID: 25192128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetration of surfactant solutions into hydrophobic capillaries.
    Bain CD
    Phys Chem Chem Phys; 2005 Aug; 7(16):3048-51. PubMed ID: 16186909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulations of droplet coalescence in oil/water/surfactant systems.
    Rekvig L; Frenkel D
    J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marangoni flow of Ag nanoparticles from the fluid-fluid interface.
    Johnson DD; Kang B; Vigorita JL; Amram A; Spain EM
    J Phys Chem A; 2008 Oct; 112(39):9318-23. PubMed ID: 18781724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropic trap, surface-mediated combing, and assembly of DNA molecules within submicrometer interfacial confinement.
    Hsieh SF; Wei HH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021901. PubMed ID: 19391772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buoyancy-driven breakup of an isolated drop with surfactant.
    Rother MA; Davis RH
    Phys Rev Lett; 2008 Jul; 101(4):044501. PubMed ID: 18764332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the distance of highly confined droplets in a capillary by interfacial tension for merging on-demand.
    Ferraro D; Serra M; Filippi D; Zago L; Guglielmin E; Pierno M; Descroix S; Viovy JL; Mistura G
    Lab Chip; 2018 Dec; 19(1):136-146. PubMed ID: 30484796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the interfacial tension in oil-water-nonionic surfactant mixtures using dissipative particle dynamics and self-consistent field theory.
    Ginzburg VV; Chang K; Jog PK; Argenton AB; Rakesh L
    J Phys Chem B; 2011 Apr; 115(16):4654-61. PubMed ID: 21473601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large ultrathin shelled drops produced via non-confined microfluidics.
    Chaurasia AS; Josephides DN; Sajjadi S
    Chemphyschem; 2015 Feb; 16(2):403-11. PubMed ID: 25382308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
    Melin J; van der Wijngaart W; Stemme G
    Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects.
    Glawdel T; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026308. PubMed ID: 23005855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation.
    Diguet A; Li H; Queyriaux N; Chen Y; Baigl D
    Lab Chip; 2011 Aug; 11(16):2666-9. PubMed ID: 21727984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence.
    Kralj JG; Schmidt MA; Jensen KF
    Lab Chip; 2005 May; 5(5):531-5. PubMed ID: 15856090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine control over the size of surfactant-polyelectrolyte nanoparticles by hydrodynamic flow focusing.
    Tresset G; Marculescu C; Salonen A; Ni M; Iliescu C
    Anal Chem; 2013 Jun; 85(12):5850-6. PubMed ID: 23713852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial dynamics and structure of surfactant layers.
    Zhmud B; Tiberg F
    Adv Colloid Interface Sci; 2005 Mar; 113(1):21-42. PubMed ID: 15763237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media.
    Costanza-Robinson MS; Zheng Z; Henry EJ; Estabrook BD; Littlefield MH
    Environ Sci Technol; 2012 Oct; 46(20):11206-12. PubMed ID: 23033988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of liquid-layer thickness on pulmonary surfactant spreading and collapse.
    Siebert TA; Rugonyi S
    Biophys J; 2008 Nov; 95(10):4549-59. PubMed ID: 18676658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.