These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23745930)

  • 21. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation.
    Quilter JH; Brash AJ; Liu F; Glässl M; Barth AM; Axt VM; Ramsay AJ; Skolnick MS; Fox AM
    Phys Rev Lett; 2015 Apr; 114(13):137401. PubMed ID: 25884136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].
    Xiao JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):598-601. PubMed ID: 19455781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light Scattering from Solid-State Quantum Emitters: Beyond the Atomic Picture.
    Brash AJ; Iles-Smith J; Phillips CL; McCutcheon DPS; O'Hara J; Clarke E; Royall B; Wilson LR; Mørk J; Skolnick MS; Fox AM; Nazir A
    Phys Rev Lett; 2019 Oct; 123(16):167403. PubMed ID: 31702333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time path-integral approach for dissipative quantum dot-cavity quantum electrodynamics: impure dephasing-induced effects.
    Nahri DG; Mathkoor FH; Raymond Ooi CH
    J Phys Condens Matter; 2017 Feb; 29(5):055701. PubMed ID: 27966466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of Antibunching in Resonance Fluorescence.
    Hanschke L; Schweickert L; Carreño JCL; Schöll E; Zeuner KD; Lettner T; Casalengua EZ; Reindl M; da Silva SFC; Trotta R; Finley JJ; Rastelli A; Del Valle E; Laussy FP; Zwiller V; Müller K; Jöns KD
    Phys Rev Lett; 2020 Oct; 125(17):170402. PubMed ID: 33156681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of phonons for exciton and biexciton generation in an optically driven quantum dot.
    Reiter DE; Kuhn T; Glässl M; Axt VM
    J Phys Condens Matter; 2014 Oct; 26(42):423203. PubMed ID: 25273644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. All-Optical Tuning of Indistinguishable Single Photons Generated in Three-Level Quantum Systems.
    Dusanowski Ł; Gustin C; Hughes S; Schneider C; Höfling S
    Nano Lett; 2022 May; 22(9):3562-3568. PubMed ID: 35486678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect.
    Xu X; Sun B; Kim ED; Smirl K; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2008 Nov; 101(22):227401. PubMed ID: 19113521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic phonon sideband dynamics during polaron formation in a single quantum dot.
    Wigger D; Karakhanyan V; Schneider C; Kamp M; Höfling S; Machnikowski P; Kuhn T; Kasprzak J
    Opt Lett; 2020 Feb; 45(4):919-922. PubMed ID: 32058506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phonon induced phase grating in quantum dot system.
    Cheng GL; Zhong WX; Chen AX
    Opt Express; 2015 Apr; 23(8):9870-80. PubMed ID: 25969028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system.
    Kaer P; Nielsen TR; Lodahl P; Jauho AP; Mørk J
    Phys Rev Lett; 2010 Apr; 104(15):157401. PubMed ID: 20482014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibunching of thermal radiation by a room-temperature phonon bath: a numerically solvable model for a strongly interacting light-matter-reservoir system.
    Carmele A; Richter M; Chow WW; Knorr A
    Phys Rev Lett; 2010 Apr; 104(15):156801. PubMed ID: 20482004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals.
    Granados Del Águila A; Jha B; Pietra F; Groeneveld E; de Mello Donegá C; Maan JC; Vanmaekelbergh D; Christianen PC
    ACS Nano; 2014 Jun; 8(6):5921-31. PubMed ID: 24861569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design strategy for terahertz quantum dot cascade lasers.
    Burnett BA; Williams BS
    Opt Express; 2016 Oct; 24(22):25471-25481. PubMed ID: 27828485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves.
    Han H; Li B; Volz S; Kosevich YA
    Phys Rev Lett; 2015 Apr; 114(14):145501. PubMed ID: 25910135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser cooling of a nanomechanical resonator mode to its quantum ground state.
    Wilson-Rae I; Zoller P; Imamoğlu A
    Phys Rev Lett; 2004 Feb; 92(7):075507. PubMed ID: 14995872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photon emission as a source of coherent behavior of polaritons.
    Vinck-Posada H; Rodriguez BA; Guimaraes PS; Cabo A; Gonzalez A
    Phys Rev Lett; 2007 Apr; 98(16):167405. PubMed ID: 17501462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.