These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 23746164)
21. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Naaz F; Haider MR; Shafi S; Yar MS Eur J Med Chem; 2019 Jun; 171():310-331. PubMed ID: 30953881 [TBL] [Abstract][Full Text] [Related]
22. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Bhattacharyya B; Panda D; Gupta S; Banerjee M Med Res Rev; 2008 Jan; 28(1):155-83. PubMed ID: 17464966 [TBL] [Abstract][Full Text] [Related]
23. Quinolin-6-Yloxyacetamides Are Microtubule Destabilizing Agents That Bind to the Colchicine Site of Tubulin. Sharma A; Sáez-Calvo G; Olieric N; de Asís Balaguer F; Barasoain I; Lamberth C; Díaz JF; Steinmetz MO Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28640209 [TBL] [Abstract][Full Text] [Related]
24. Targeting Tubulin-colchicine Site for Cancer Therapy: Inhibitors, Antibody- Drug Conjugates and Degradation Agents. Duan Y; Liu W; Tian L; Mao Y; Song C Curr Top Med Chem; 2019; 19(15):1289-1304. PubMed ID: 31210108 [TBL] [Abstract][Full Text] [Related]
25. Tubulin Proteins in Cancer Resistance: A Review. Kamal MA; Al-Zahrani MH; Khan SH; Khan MH; Al-Subhi HA; Kuerban A; Aslam M; Al-Abbasi FA; Anwar F Curr Drug Metab; 2020; 21(3):178-185. PubMed ID: 32101117 [TBL] [Abstract][Full Text] [Related]
26. Mechanisms of Tubulin Binding Ligands to Target Cancer Cells: Updates on their Therapeutic Potential and Clinical Trials. Kumar B; Kumar R; Skvortsova I; Kumar V Curr Cancer Drug Targets; 2017; 17(4):357-375. PubMed ID: 27697026 [TBL] [Abstract][Full Text] [Related]
27. Microtubule Targeting Agents as Cancer Chemotherapeutics: An Overview of Molecular Hybrids as Stabilizing and Destabilizing Agents. Tangutur AD; Kumar D; Krishna KV; Kantevari S Curr Top Med Chem; 2017; 17(22):2523-2537. PubMed ID: 28056738 [TBL] [Abstract][Full Text] [Related]
28. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites. Field JJ; Pera B; Gallego JE; Calvo E; Rodríguez-Salarichs J; Sáez-Calvo G; Zuwerra D; Jordi M; Andreu JM; Prota AE; Ménchon G; Miller JH; Altmann KH; Díaz JF J Nat Prod; 2018 Mar; 81(3):494-505. PubMed ID: 29023132 [TBL] [Abstract][Full Text] [Related]
29. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Li W; Sun H; Xu S; Zhu Z; Xu J Future Med Chem; 2017 Oct; 9(15):1765-1794. PubMed ID: 28929799 [TBL] [Abstract][Full Text] [Related]
30. -NH-dansyl isocolchicine exhibits a significantly improved tubulin-binding affinity and microtubule inhibition in comparison to isocolchicine by binding tubulin through its A and B rings. Das L; Datta AB; Gupta S; Poddar A; Sengupta S; Janik ME; Bhattacharyya B Biochemistry; 2005 Mar; 44(9):3249-58. PubMed ID: 15736935 [TBL] [Abstract][Full Text] [Related]
32. Revisiting microtubule targeting agents: α-Tubulin and the pironetin binding site as unexplored targets for cancer therapeutics. Coulup SK; Georg GI Bioorg Med Chem Lett; 2019 Aug; 29(15):1865-1873. PubMed ID: 31130264 [TBL] [Abstract][Full Text] [Related]
33. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Yi JM; Zhang XF; Huan XJ; Song SS; Wang W; Tian QT; Sun YM; Chen Y; Ding J; Wang YQ; Yang CH; Miao ZH Oncotarget; 2015 Apr; 6(11):8960-73. PubMed ID: 25840421 [TBL] [Abstract][Full Text] [Related]
34. Tubulin: an example of targeted chemotherapy. Seligmann J; Twelves C Future Med Chem; 2013 Mar; 5(3):339-52. PubMed ID: 23464522 [TBL] [Abstract][Full Text] [Related]
35. Synthesis, antiproliferative activity and molecular docking of thiocolchicine urethanes. Majcher U; Urbaniak A; Maj E; Moshari M; Delgado M; Wietrzyk J; Bartl F; Chambers TC; Tuszynski JA; Huczyński A Bioorg Chem; 2018 Dec; 81():553-566. PubMed ID: 30248507 [TBL] [Abstract][Full Text] [Related]
36. A novel synthetic compound exerts effective anti-tumour activity in vivo via the inhibition of tubulin polymerisation in A549 cells. Yan J; Pang Y; Sheng J; Wang Y; Chen J; Hu J; Huang L; Li X Biochem Pharmacol; 2015 Sep; 97(1):51-61. PubMed ID: 26212540 [TBL] [Abstract][Full Text] [Related]
37. Fluorescence spectroscopic methods to analyze drug-tubulin interactions. Bhattacharyya B; Kapoor S; Panda D Methods Cell Biol; 2010; 95():301-29. PubMed ID: 20466142 [TBL] [Abstract][Full Text] [Related]
38. DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells. Podolski-Renić A; Banković J; Dinić J; Ríos-Luci C; Fernandes MX; Ortega N; Kovačević-Grujičić N; Martín VS; Padrón JM; Pešić M Eur J Pharm Sci; 2017 Jul; 105():159-168. PubMed ID: 28502672 [TBL] [Abstract][Full Text] [Related]
39. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Lindamulage IK; Vu HY; Karthikeyan C; Knockleby J; Lee YF; Trivedi P; Lee H Sci Rep; 2017 Aug; 7(1):10298. PubMed ID: 28860494 [TBL] [Abstract][Full Text] [Related]
40. Recent Trends in Tubulin-Binding Combretastatin A-4 Analogs for Anticancer Drug Development. Paidakula S; Nerella S; Kankala S; Kankala RK Curr Med Chem; 2022; 29(21):3748-3773. PubMed ID: 34856892 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]