These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 23746165)
1. Perchlorate radiolysis on Mars and the origin of martian soil reactivity. Quinn RC; Martucci HF; Miller SR; Bryson CE; Grunthaner FJ; Grunthaner PJ Astrobiology; 2013 Jun; 13(6):515-20. PubMed ID: 23746165 [TBL] [Abstract][Full Text] [Related]
2. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues. Georgiou CD; Zisimopoulos D; Kalaitzopoulou E; Quinn RC Astrobiology; 2017 Apr; 17(4):319-336. PubMed ID: 28418706 [TBL] [Abstract][Full Text] [Related]
3. Organics on Mars? ten Kate IL Astrobiology; 2010; 10(6):589-603. PubMed ID: 20735250 [TBL] [Abstract][Full Text] [Related]
4. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants. Quinn RC; Zent AP Orig Life Evol Biosph; 1999 Jan; 29(1):59-72. PubMed ID: 10077869 [TBL] [Abstract][Full Text] [Related]
5. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism. Wilson EH; Atreya SK; Kaiser RI; Mahaffy PR J Geophys Res Planets; 2016 Aug; 121(8):1472-1487. PubMed ID: 27774369 [TBL] [Abstract][Full Text] [Related]
7. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life. McKay CP; Stoker CR; Glass BJ; Davé AI; Davila AF; Heldmann JL; Marinova MM; Fairen AG; Quinn RC; Zacny KA; Paulsen G; Smith PH; Parro V; Andersen DT; Hecht MH; Lacelle D; Pollard WH Astrobiology; 2013 Apr; 13(4):334-53. PubMed ID: 23560417 [TBL] [Abstract][Full Text] [Related]
8. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith. McCaig HC; Stockton A; Crilly C; Chung S; Kanik I; Lin Y; Zhong F Astrobiology; 2016 Sep; 16(9):703-14. PubMed ID: 27623199 [TBL] [Abstract][Full Text] [Related]
9. Production of nitrates and perchlorates by laser ablation of sodium chloride in simulated Martian atmospheres. Implications for their formation by electric discharges in dust devils. Martínez-Pabello PU; Navarro-González R; Walls X; Pi-Puig T; González-Chávez JL; de la Rosa JG; Molina P; Zamora O Life Sci Space Res (Amst); 2019 Aug; 22():125-136. PubMed ID: 31421844 [TBL] [Abstract][Full Text] [Related]
10. Evidence that the reactivity of the martian soil is due to superoxide ions. Yen AS; Kim SS; Hecht MH; Frant MS; Murray B Science; 2000 Sep; 289(5486):1909-12. PubMed ID: 10988066 [TBL] [Abstract][Full Text] [Related]
11. The chemical activities of the Viking biology experiments and the arguments for the presence of superoxides, peroxides, gamma-Fe2O3 and carbon suboxide polymer in the Martian soil. Oyama VI; Berdahl BJ; Woeller F; Lehwalt M Life Sci Space Res; 1978; 16():3-8. PubMed ID: 11965660 [TBL] [Abstract][Full Text] [Related]
12. A coupled soil-atmosphere model of H2O2 on Mars. Bullock MA; Stoker CR; McKay CP; Zent AP Icarus; 1994 Jan; 107(1):142-54. PubMed ID: 11539124 [TBL] [Abstract][Full Text] [Related]
13. Rapid Radiolytic Degradation of Amino Acids in the Martian Shallow Subsurface: Implications for the Search for Extinct Life. Pavlov AA; McLain HL; Glavin DP; Roussel A; DworkIn JP; Elsila JE; Yocum KM Astrobiology; 2022 Sep; 22(9):1099-1115. PubMed ID: 35749703 [TBL] [Abstract][Full Text] [Related]
14. Effects of UV and Calcium Perchlorates on Uracil Deposited on Strontium Fluoride Substrates at Mars Pressure and Temperature. Chaouche-Mechidal N; Stalport F; Caupos E; Mebold E; Azémard C; Szopa C; Coll P; Cottin H Astrobiology; 2023 Sep; 23(9):959-978. PubMed ID: 37672714 [TBL] [Abstract][Full Text] [Related]
15. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Keppler F; Harper DB; Greule M; Ott U; Sattler T; Schöler HF; Hamilton JT Sci Rep; 2014 Nov; 4():7010. PubMed ID: 25394222 [TBL] [Abstract][Full Text] [Related]
16. Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results. Lasne J; Noblet A; Szopa C; Navarro-González R; Cabane M; Poch O; Stalport F; François P; Atreya SK; Coll P Astrobiology; 2016 Dec; 16(12):977-996. PubMed ID: 27925795 [TBL] [Abstract][Full Text] [Related]
17. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Navarro-González R; Navarro KF; de la Rosa J; Iñiguez E; Molina P; Miranda LD; Morales P; Cienfuegos E; Coll P; Raulin F; Amils R; McKay CP Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16089-94. PubMed ID: 17060639 [TBL] [Abstract][Full Text] [Related]
18. Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix lander. Schulze-Makuch D; Turse C; Houtkooper JM; McKay CP Astrobiology; 2008 Apr; 8(2):205-14. PubMed ID: 18393688 [TBL] [Abstract][Full Text] [Related]
19. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. Levin GV; Straat PA Astrobiology; 2016 Oct; 16(10):798-810. PubMed ID: 27626510 [TBL] [Abstract][Full Text] [Related]
20. Influence of Calcium Perchlorate on the Search for Martian Organic Compounds with MTBSTFA/DMF Derivatization. He Y; Buch A; Szopa C; Millan M; Freissinet C; Navarro-Gonzalez R; Guzman M; Johnson S; Glavin D; Williams A; Eigenbrode J; Teinturier S; Malespin C; Coscia D; Bonnet JY; Lu P; Cabane M; Mahaffy P Astrobiology; 2021 Sep; 21(9):1137-1156. PubMed ID: 34534003 [No Abstract] [Full Text] [Related] [Next] [New Search]