BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 23746254)

  • 1. Arrest peptides: cis-acting modulators of translation.
    Ito K; Chiba S
    Annu Rev Biochem; 2013; 82():171-202. PubMed ID: 23746254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nascent polypeptide sequences that influence ribosome function.
    Cruz-Vera LR; Sachs MS; Squires CL; Yanofsky C
    Curr Opin Microbiol; 2011 Apr; 14(2):160-6. PubMed ID: 21342782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center.
    Ramu H; Vázquez-Laslop N; Klepacki D; Dai Q; Piccirilli J; Micura R; Mankin AS
    Mol Cell; 2011 Feb; 41(3):321-30. PubMed ID: 21292164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomes in a stacked array: elucidation of the step in translation elongation at which they are stalled during S-adenosyl-L-methionine-induced translation arrest of CGS1 mRNA.
    Yamashita Y; Kadokura Y; Sotta N; Fujiwara T; Takigawa I; Satake A; Onouchi H; Naito S
    J Biol Chem; 2014 May; 289(18):12693-704. PubMed ID: 24652291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosome rearrangements at the onset of translational bypassing.
    Agirrezabala X; Samatova E; Klimova M; Zamora M; Gil-Carton D; Rodnina MV; Valle M
    Sci Adv; 2017 Jun; 3(6):e1700147. PubMed ID: 28630923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome regulation by the nascent peptide.
    Lovett PS; Rogers EJ
    Microbiol Rev; 1996 Jun; 60(2):366-85. PubMed ID: 8801438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis.
    Onouchi H; Nagami Y; Haraguchi Y; Nakamoto M; Nishimura Y; Sakurai R; Nagao N; Kawasaki D; Kadokura Y; Naito S
    Genes Dev; 2005 Aug; 19(15):1799-810. PubMed ID: 16027170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome.
    Woolhead CA; Johnson AE; Bernstein HD
    Mol Cell; 2006 Jun; 22(5):587-98. PubMed ID: 16762832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of drug-dependent ribosome stalling.
    Vazquez-Laslop N; Thum C; Mankin AS
    Mol Cell; 2008 Apr; 30(2):190-202. PubMed ID: 18439898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons.
    Vivanco-Domínguez S; Bueno-Martínez J; León-Avila G; Iwakura N; Kaji A; Kaji H; Guarneros G
    J Mol Biol; 2012 Apr; 417(5):425-39. PubMed ID: 22326347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cis-acting resistance peptides reveal dual ribosome inhibitory action of the macrolide josamycin.
    Lovmar M; Vimberg V; Lukk E; Nilsson K; Tenson T; Ehrenberg M
    Biochimie; 2009 Aug; 91(8):989-95. PubMed ID: 19463886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for the role of isomerization in nascent peptide movement through the ribosomal tunnel.
    Agmon IC
    FASEB J; 2012 Jun; 26(6):2277-82. PubMed ID: 22389440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene.
    Onoue N; Yamashita Y; Nagao N; Goto DB; Onouchi H; Naito S
    J Biol Chem; 2011 Apr; 286(17):14903-12. PubMed ID: 21335553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tmRNA-induced release of messenger RNA from stalled ribosomes.
    Ivanova N; Pavlov MY; Ehrenberg M
    J Mol Biol; 2005 Jul; 350(5):897-905. PubMed ID: 15967466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative genomics study on the effect of individual amino acids on ribosome stalling.
    Sabi R; Tuller T
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S5. PubMed ID: 26449596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics.
    Yonath A; Bashan A
    Annu Rev Microbiol; 2004; 58():233-51. PubMed ID: 15487937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilized ribosome display for in vitro selection.
    Hara S; Liu M; Wang W; Xu M; Li Z; Ito Y
    Methods Mol Biol; 2012; 805():59-73. PubMed ID: 22094800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic identification of nascent peptides that induce ribosome stalling.
    Tanner DR; Cariello DA; Woolstenhulme CJ; Broadbent MA; Buskirk AR
    J Biol Chem; 2009 Dec; 284(50):34809-18. PubMed ID: 19840930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraribosomal regulation of expression and fate of proteins.
    Nakatogawa H; Ito K
    Chembiochem; 2004 Jan; 5(1):48-51. PubMed ID: 14695511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.