BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23746256)

  • 1. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes.
    Martin SF; Clements JH
    Annu Rev Biochem; 2013; 82():267-93. PubMed ID: 23746256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design.
    Olsson TS; Williams MA; Pitt WR; Ladbury JE
    J Mol Biol; 2008 Dec; 384(4):1002-17. PubMed ID: 18930735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization.
    DeLorbe JE; Clements JH; Teresk MG; Benfield AP; Plake HR; Millspaugh LE; Martin SF
    J Am Chem Soc; 2009 Nov; 131(46):16758-70. PubMed ID: 19886660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of fragment binding.
    Ferenczy GG; Keserű GM
    J Chem Inf Model; 2012 Apr; 52(4):1039-45. PubMed ID: 22458364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions.
    Cramer DL; Cheng B; Tian J; Clements JH; Wypych RM; Martin SF
    Eur J Med Chem; 2020 Dec; 208():112771. PubMed ID: 32916312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of binding of 2-methoxy-3-isopropylpyrazine and 2-methoxy-3-isobutylpyrazine to the major urinary protein.
    Bingham RJ; Findlay JB; Hsieh SY; Kalverda AP; Kjellberg A; Perazzolo C; Phillips SE; Seshadri K; Trinh CH; Turnbull WB; Bodenhausen G; Homans SW
    J Am Chem Soc; 2004 Feb; 126(6):1675-81. PubMed ID: 14871097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding stepwise disrupts water network in thrombin: enthalpic and entropic changes reveal classical hydrophobic effect.
    Biela A; Sielaff F; Terwesten F; Heine A; Steinmetzer T; Klebe G
    J Med Chem; 2012 Jul; 55(13):6094-110. PubMed ID: 22612268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-ligand interactions: thermodynamic effects associated with increasing nonpolar surface area.
    Myslinski JM; DeLorbe JE; Clements JH; Martin SF
    J Am Chem Soc; 2011 Nov; 133(46):18518-21. PubMed ID: 22007755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-energy landscapes of protein domain movements upon ligand binding.
    Kondo HX; Okimoto N; Morimoto G; Taiji M
    J Phys Chem B; 2011 Jun; 115(23):7629-36. PubMed ID: 21608983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data.
    Chalikian TV; Totrov M; Abagyan R; Breslauer KJ
    J Mol Biol; 1996 Jul; 260(4):588-603. PubMed ID: 8759322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides.
    Aboitiz N; Vila-Perelló M; Groves P; Asensio JL; Andreu D; Cañada FJ; Jiménez-Barbero J
    Chembiochem; 2004 Sep; 5(9):1245-55. PubMed ID: 15368576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong solute-solute dispersive interactions in a protein-ligand complex.
    Malham R; Johnstone S; Bingham RJ; Barratt E; Phillips SE; Laughton CA; Homans SW
    J Am Chem Soc; 2005 Dec; 127(48):17061-7. PubMed ID: 16316253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond affinity: enthalpy-entropy factorization unravels complexity of a flat structure-activity relationship for inhibition of a tRNA-modifying enzyme.
    Neeb M; Betz M; Heine A; Barandun LJ; Hohn C; Diederich F; Klebe G
    J Med Chem; 2014 Jul; 57(13):5566-78. PubMed ID: 24960372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enthalpy/entropy compensation effects from cavity desolvation underpin broad ligand binding selectivity for rat odorant binding protein 3.
    Portman KL; Long J; Carr S; Briand L; Winzor DJ; Searle MS; Scott DJ
    Biochemistry; 2014 Apr; 53(14):2371-9. PubMed ID: 24665925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A; Spyrakis F; Cozzini P; Abraham DJ; Kellogg GE; Mozzarelli A
    J Mol Biol; 2006 Apr; 358(1):289-309. PubMed ID: 16497327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of absolute protein-ligand binding affinity using path and endpoint approaches.
    Lee MS; Olson MA
    Biophys J; 2006 Feb; 90(3):864-77. PubMed ID: 16284269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding.
    Biela A; Betz M; Heine A; Klebe G
    ChemMedChem; 2012 Aug; 7(8):1423-34. PubMed ID: 22733601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.