These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266 [TBL] [Abstract][Full Text] [Related]
3. Low-Temperature Methanol-Water Reforming Over Alcohol Dehydrogenase and Immobilized Ruthenium Complex. Shen Y; Wang L; Xu Z; Ning F; Zhan Y; Bai C; Zhou X ChemSusChem; 2021 Sep; 14(18):3867-3875. PubMed ID: 34310047 [TBL] [Abstract][Full Text] [Related]
4. Molecular hydrogen formation from photocatalysis of methanol on TiO2(110). Xu C; Yang W; Guo Q; Dai D; Chen M; Yang X J Am Chem Soc; 2013 Jul; 135(28):10206-9. PubMed ID: 23819680 [TBL] [Abstract][Full Text] [Related]
5. Effect of Gold Particle Size on Steam Reforming of Methanol Over Au/CeO2-ZrO2 Catalysts. Lakshmanan P; Kim DH; Park ED J Nanosci Nanotechnol; 2016 May; 16(5):4386-92. PubMed ID: 27483761 [TBL] [Abstract][Full Text] [Related]
6. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. Barreca D; Fornasiero P; Gasparotto A; Gombac V; Maccato C; Montini T; Tondello E ChemSusChem; 2009; 2(3):230-3. PubMed ID: 19235823 [TBL] [Abstract][Full Text] [Related]
7. Bioinduced Room-Temperature Methanol Reforming. Heim LE; Thiel D; Gedig C; Deska J; Prechtl MH Angew Chem Int Ed Engl; 2015 Aug; 54(35):10308-12. PubMed ID: 26179443 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. Okamoto Y; Ida S; Hyodo J; Hagiwara H; Ishihara T J Am Chem Soc; 2011 Nov; 133(45):18034-7. PubMed ID: 21999601 [TBL] [Abstract][Full Text] [Related]
10. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage. Neltner B; Peddie B; Xu A; Doenlen W; Durand K; Yun DS; Speakman S; Peterson A; Belcher A ACS Nano; 2010 Jun; 4(6):3227-35. PubMed ID: 20527795 [TBL] [Abstract][Full Text] [Related]
11. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. Lim KH; Chen ZX; Neyman KM; Rösch N J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600 [TBL] [Abstract][Full Text] [Related]
12. Size effects on the hydrogen storage properties of nanoscaffolded Li3BN2H8. Wu H; Zhou W; Wang K; Udovic TJ; Rush JJ; Yildirim T; Bendersky LA; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE; Meyer MS Nanotechnology; 2009 May; 20(20):204002. PubMed ID: 19420650 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion. Jeong H; Na JG; Jang MS; Ko CH J Nanosci Nanotechnol; 2016 May; 16(5):4393-8. PubMed ID: 27483762 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst. Wu HS; Chung SC J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Cortright RD; Davda RR; Dumesic JA Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544 [TBL] [Abstract][Full Text] [Related]
16. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
17. Room temperature stable CO Liu Z; Yin Z; Cox C; Bosman M; Qian X; Li N; Zhao H; Du Y; Li J; Nocera DG Sci Adv; 2016 Sep; 2(9):e1501425. PubMed ID: 28508036 [TBL] [Abstract][Full Text] [Related]
18. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations. Tang QL; Zou WT; Huang RK; Wang Q; Duan XX Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118 [TBL] [Abstract][Full Text] [Related]
19. Formaldehyde and methanol formation from reaction of carbon monoxide and hydrogen on neutral Fe2S2 clusters in the gas phase. Yin S; Wang Z; Bernstein ER Phys Chem Chem Phys; 2013 Apr; 15(13):4699-706. PubMed ID: 23422959 [TBL] [Abstract][Full Text] [Related]
20. In situ synthesis of Cu nanocatalysts on ZnO whiskers embedded in a microstructured paper composite for autothermal hydrogen production. Koga H; Kitaoka T; Wariishi H Chem Commun (Camb); 2008 Nov; (43):5616-8. PubMed ID: 18997970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]