These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23746269)

  • 21. Glycosylate and move! The glycosyltransferase Maf is involved in bacterial flagella formation.
    Sulzenbacher G; Roig-Zamboni V; Lebrun R; Guérardel Y; Murat D; Mansuelle P; Yamakawa N; Qian XX; Vincentelli R; Bourne Y; Wu LF; Alberto F
    Environ Microbiol; 2018 Jan; 20(1):228-240. PubMed ID: 29076618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolution of histidine biosynthesis in archaea: insights into the his genes structure and organization in LUCA.
    Fondi M; Emiliani G; Liò P; Gribaldo S; Fani R
    J Mol Evol; 2009 Nov; 69(5):512-26. PubMed ID: 19888544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications.
    Matsumi R; Atomi H; Driessen AJ; van der Oost J
    Res Microbiol; 2011 Jan; 162(1):39-52. PubMed ID: 21034816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence analysis of nonulosonic acid biosynthetic gene clusters in Vibrionaceae and Moritella viscosa.
    Halsør MH; Altermark B; Ræder ILU
    Sci Rep; 2020 Jul; 10(1):11995. PubMed ID: 32686701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii.
    Magidovich H; Yurist-Doutsch S; Konrad Z; Ventura VV; Dell A; Hitchen PG; Eichler J
    Mol Microbiol; 2010 Apr; 76(1):190-9. PubMed ID: 20149102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence.
    Storbeck S; Rolfes S; Raux-Deery E; Warren MJ; Jahn D; Layer G
    Archaea; 2010 Dec; 2010():175050. PubMed ID: 21197080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae.
    Chaban B; Logan SM; Kelly JF; Jarrell KF
    J Bacteriol; 2009 Jan; 191(1):187-95. PubMed ID: 18978056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation.
    Eichler J; Guan Z
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jun; 1862(6):589-599. PubMed ID: 28330764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements.
    Krupovic M; Gribaldo S; Bamford DH; Forterre P
    Mol Biol Evol; 2010 Dec; 27(12):2716-32. PubMed ID: 20581330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sweet New Roles for Protein Glycosylation in Prokaryotes.
    Eichler J; Koomey M
    Trends Microbiol; 2017 Aug; 25(8):662-672. PubMed ID: 28341406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea.
    Groussin M; Gouy M
    Mol Biol Evol; 2011 Sep; 28(9):2661-74. PubMed ID: 21498602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea.
    Siebers B; Schönheit P
    Curr Opin Microbiol; 2005 Dec; 8(6):695-705. PubMed ID: 16256419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids.
    Lombard J; López-García P; Moreira D
    Mol Biol Evol; 2012 Nov; 29(11):3261-5. PubMed ID: 22718911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications.
    Ng SY; Chaban B; Jarrell KF
    J Mol Microbiol Biotechnol; 2006; 11(3-5):167-91. PubMed ID: 16983194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway.
    Smit A; Mushegian A
    Genome Res; 2000 Oct; 10(10):1468-84. PubMed ID: 11042147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Navigating the structure-function-evolutionary relationship of CsaA chaperone in archaea.
    Sharma A; Rani S; Goel M
    Crit Rev Microbiol; 2018 May; 44(3):274-289. PubMed ID: 28920507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defining the topology of the N-glycosylation pathway in the halophilic archaeon Haloferax volcanii.
    Plavner N; Eichler J
    J Bacteriol; 2008 Dec; 190(24):8045-52. PubMed ID: 18931126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and Biosynthetic Diversity of Nonulosonic Acids (NulOs) That Decorate Surface Structures in Bacteria.
    McDonald ND; Boyd EF
    Trends Microbiol; 2021 Feb; 29(2):142-157. PubMed ID: 32950378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-glycosylation in Archaea: Unusual sugars and unique modifications.
    Notaro A; Zaretsky M; Molinaro A; De Castro C; Eichler J
    Carbohydr Res; 2023 Dec; 534():108963. PubMed ID: 37890267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima.
    Nelson KE; Clayton RA; Gill SR; Gwinn ML; Dodson RJ; Haft DH; Hickey EK; Peterson JD; Nelson WC; Ketchum KA; McDonald L; Utterback TR; Malek JA; Linher KD; Garrett MM; Stewart AM; Cotton MD; Pratt MS; Phillips CA; Richardson D; Heidelberg J; Sutton GG; Fleischmann RD; Eisen JA; White O; Salzberg SL; Smith HO; Venter JC; Fraser CM
    Nature; 1999 May; 399(6734):323-9. PubMed ID: 10360571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.